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SUMMARY

Radiological search and mapping are two separate problems that are currently per-

formed by human operators in the field. These tasks could not only be more effective

when performed by robotic agents, doing so would also keep human operators from being

exposed to gamma radiation. Radiological mapping is the process of taking measurements

to build an understanding of the contamination of an area as quickly as possible. This usu-

ally implies some degree of coverage for a predefined area. Radiological search is a similar

problem that focuses on inferring what the parameters of a source of emissions might be

and localizing them as quickly as possible. While a variety of techniques exist for both of

these problems, they are usually slow or do not use all of the information available, and

their performance suffers for it.

This work has two goals. The first is to use Monte Carlo simulations to quantify the im-

provements gained by using information driven search with a novel configuration of air and

ground robots equipped with counting instruments. This method will be compared to the

same configuration of robots performing random sampling and a configuration of ground

robots performing a systematic rectilinear search. A linear reduction in mapping error with

time is observed for the systematic search while exponential reductions are observed for

the teams using both air and ground robots. The information driven search demonstrates

the quickest reduction of mapping error with time.

The second goal is to propose and refine a particle filtering algorithm for localizing,

identifying, and characterizing point sources of gamma radiation in the presence of obsta-

cles. The proposed algorithm has five major improvements over the current state of the

art. Firstly, it uses discrete precomputed attenuation kernels to perform radiation transport

thousands of times per second. Secondly, it uses an introspective algorithm to dynamically

adjust computational load to balance speed and accuracy. Thirdly it uses a gamma spectrum

unfolding algorithm to incorporate spectral data. Fourthly, it uses multiple parallel particle

xx



filters for each isotope of interest, thus tailoring the attenuation kernels to the appropriate

isotope. Finally, it performs all likelihood calculations in the logarithmic domain to im-

prove robustness and accuracy. The overall methodology is evaluated with Monte Carlo

simulations and lab scale results using live sources of gamma radiation. The results show

vast reductions in computational burden for embedded hardware, increased search speed,

and reduced error.

xxi



CHAPTER 1

INTRODUCTION

1.1 Motivation

Atomic fission is the most powerful technology available to humanity today. A single gram

of U-235 can release the same energy as 3 metric tons of coal [1]. For technology sectors

that use nuclear energy, there is significant interest in continually improving safety and

security procedures. In 2021, the United States alone allocated $19.8 billion to nuclear

security [2] and $1.6 billion on nuclear energy research [3]. While the intention of nuclear

security procedures is to prevent disasters from occurring, it is still imperative that disaster

mitigation research be pursued as it is inevitable that nuclear accidents will occur at some

point.

Nuclear accidents [4], trafficking [5], and weapons proliferation [6] are very real, per-

sistent problems. The tools available for dealing with these issues are limited, and thus

the capability to mitigate consequences of these disasters is limited as well. For example,

it is widely recognized that the response to the Fukushima disaster in 2011 was inade-

quate [7], [8]. Information is crucial to an effective disaster response – however, during

the Fukushima disaster response, critical information was not available quickly enough. In

addition to the “information avoiding behaviors” by key actors [8], there was limited tech-

nology available to assess and map radiation levels around the plant until nearly a month

later when remote controlled air and ground robots were deployed [9]–[11].

Governments and emergency responders are increasingly interested in using robotics to

address these issues. Robotics is a powerful tool for nuclear disaster response management.

The data received from robotic surveys can inform evacuation plans, mitigation strategies,

locate illicit material, etc—all without endangering the operator. Even as far back as the
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Chernobyl disaster in 1986, robots were considered an effective tool in disaster mitigation

[12]. There is significant historical precedent for the deployment of robotic systems for

nuclear disaster mitigation and surveying of sites with radiation contamination [9]–[12].

Now, aerial robotics represent the cutting edge of nuclear safety for the quick, terrain ag-

nostic maneuvering [13]. Real time algorithms for the detection, localization, and search

for radioactive material using lightweight sensors must be developed to further facilitate

this technology.

1.2 Prior Work

Missions for nuclear detection robots typically fall into two categories: mapping and Source

Term Estimation (STE). Mapping missions usually involve sites with widespread radiation

contamination and require the robotic system to characterize the radiation environment

over a defined area [14]–[16]. In contrast, radiological STE is the process of localizing and

identifying parameters (location, strength, cardinality, etc.) of point sources of radiation

[17]–[20]. Such STE missions may, for instance, stem from cases where nuclear materials

are stolen or trafficked and must be located by law enforcement. This dissertation presents

research regarding both mapping and STE missions.

1.2.1 Mapping

There are myriad considerations to the problem of mapping a radiation field (or any scalar

field). Is the mapping performed with a single agent [21], [22] or multiple agents [23]?

Should optimal coverage paths [24], [25] or information driven paths [21]–[23] be used?

Is myopic path planning [21], [22] or non-myopic path planning implemented [23]? There

are hundreds of papers written about each of these considerations.

The simplest conceptual approach to obtaining a high-resolution radiation map is to

cover the entire area of interest with numerous radiation sensors. Since this is usually not

practical, there is significant interest in algorithms and methods to efficiently map large

2



areas with a fairly small number of detectors mounted on mobile platforms. Numerous

studies have been performed over the past several decades exploring the radiation mapping

problem using single agents [21], [22] and multiple agents [23]. Prior work has explored the

use of optimal coverage methods as well as information-driven search [24], [25]. It is well-

known in the radiation sensing community that different vehicle and detector combinations

yield maps of differing spatial resolutions. For instance, one can rapidly obtain a map with

low spatial resolution using sensors mounted to one or a handful of manned helicopters or

fixed-wing aircraft. Such systems typically produce ground maps with resolutions on the

order of 500 m [26], [27]. Better spatial resolutions of 1-5 m have been achieved using

low-altitude Uninhabited Aerial Vehicle (UAV)s (remote controlled helicopters or multi-

rotor drones) [9], [28]. Ground based surveys using human operators or ground vehicles

offer even higher resolutions at the cost of increased time-to-map [29], [30].

Combining the resolution of ground-based surveys with the speed of an aerial survey

may enable a best-case scenario in which high-resolution maps can be obtained quickly.

This may aid in evacuation, rescue, and containment operations. Combined teams of UAVs

and Uninhabited Ground Vehicle (UGV)s have been studied previously [31]–[33]. These

experiments used the UAV to provide maps and a general search space for the UGV(s).

While these experiments locate point sources faster than a UGV team alone, they do not

map the entire area with a high resolution. Another approach pursued in [34] used a he-

licopter with a small tethered UGV that could be deployed for soil samples. While this

soil-sampling capability may be important in a disaster response scenario, the work did

not consider the mapping capability of a combined UAV-UGV team. A multi agent sys-

tem using information driven path planning for the UAV segment combined with optimal

coverage path planning for the UGV segment combines the strengths of UAVs and UGVs.
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1.2.2 Source Term Estimation

The STE problem for a single source has been solved by a variety of authors using least-

squares regression [35], Kalman filters [36], particle filters [22], [37]–[41], neural networks

[42], and other heuristic algorithms [43]. STE for multiple sources can be much more diffi-

cult, however. In this case, the difficulty of the problem depends on whether measurements

at any given location are only influenced by a single source (non-overlapping sources), or

whether measurements at certain locations are influenced by multiple sources (overlapping

sources). The degree to which sources overlap depends on their spacing and strengths as

well as the obstacle and terrain environments.

The non-overlapping STE problem may be solved by estimating the source parameters

independently, one source at a time, by decomposing the problem into multiple single-

source STE problems. This was the approach taken by Peterson et al. [33] and Chin et al.

[44]. In [44], the authors introduce the concept of “fusion range,” which limits the spatial

range of influence that measurements can have, thereby restricting the method to use in

non-overlapping cases only.

Several papers have addressed overlapping STE problems [21], [45]–[50]. In [45] and

[46], the authors performed radiation contour mapping using simulated measurements but

did not consider attenuation from obstacles or terrain. The work in [47] and [48] used

Additive Point Source Localization (APSL) algorithms to reconstruct the 3D positions and

activities of multiple gamma-ray point sources ignoring the effects of obstacles. An exten-

sion of this research by Bandstra et al [49] addressed online determination of attenuation

coefficients and source parameters for a single source case. They found that their method

relied heavily on knowledge of the geometry of the obstacle beyond just the surface level

provided by Light Detection and Ranging (LiDAR). The work in [50] proposed a grid-

based particle filter capable of localizing multiple overlapping sources in the presence of

obstacle attenuation, but the number of sources had to be known a priori to generate the

particle grid. This method was experimentally tested for two sources of the same isotope
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and two sources of differing isotopes. Measurements from different isotopes were rele-

gated to independent particle filters, and thus the number of particles grew linearly with the

number of isotopes considered. In the case of multiple sources of the same isotope, com-

binations of sources had to be considered, which caused the number of particles to grow

exponentially. On the other hand, Ristic et al. [21] proposed a particle filter that handles an

unknown number of multiple overlapping sources using a fixed number of particles. While

the algorithm was shown to exhibit good performance using experimental data, it was only

validated with up to two sources and did not include a mechanism to account for attenu-

ation by obstacles or terrain. However, an earlier paper by the same group of researchers

[51] addressed the obstacle attenuation problem via ray-casting.

Several challenges and limitations are present in the literature. First, STE for larger

numbers of sources (i.e., three to ten) remains a challenging problem due to the ambiguity

caused by overlapping sources. Second, for particle filters, which have commonly been ap-

plied to STE, scalability problems arise due to the very large number of particles needed to

represent hypotheses associated with numerous sources. Additionally, STE in obstacle-rich

environments has proven challenging for algorithms that are designed to run in real time.

This is because radiation transport modeling must be performed from each hypothesized

source to calculate the predicted measurement at a particular location. For this reason, the

majority of STE work has focused on a small number of sources (two or less) in mostly

obstacle-free environments.

Prior work on radiological STE can be categorized based on the levels of capabilities

shown in Table 1.1. The highest level in each category of Table 1.1 represents the pinnacle

relaxation of assumptions. An algorithm at that level for all categories would need to

know nothing a priori to return the parameters for all sources in the environment given a

sufficient set of measurements. The challenge of developing such an algorithm is that the

search space grows larger and more complex as each guiding assumption is removed. For

example, in the single source case with a known isotope and no attenuation, an inference
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Table 1.1: Levels of assumptions made for each category

Attenuation Source Cardinality Isotopes
1 none 1 isotope agnostic
2 known parameters known (2+) known
3 unknown parameters unknown unknown

algorithm must only divine 4 hidden states: 3 spatial and 1 strength. However, relaxing

the source cardinality one level to a known number of sources will at minimum double the

search space.

The relevant references have been grouped in Table 1.2. This table shows at which level

each paper sits in for each category. The categories presented are “Attenuation,” “Source

Cardinality,” and “Isotopes.” Each of those is broken down into three levels. For context,

the ratings of Chapter 3 and Chapter 4 of this dissertation are included as well.

The attenuation category describes the capabilities to perform STE in an unknown en-

vironment. Level one means that the environment and attenuation are ignored. Level two

means that attenuation is factored in, but the properties of the environment are known a

priori. Level three indicates that there is no prior knowledge of the environment, and ad-

ditional sensors such as LiDAR, cameras, or ultrasonic sensors are required. The trade-off

between knowledge of the environment and knowledge of the sources is best seen in [49]

where they use a method for source localization that has been extended to the multi-source

case in [47], but they stay with the single source case to reconstruct the unknown environ-

ment and attenuation parameters with the help of LiDAR.

The source cardinality category describes how many sources are present in the envi-

ronment. Level one is a single source being present (and it is known to be only a single

source). Level two is where there could be multiple sources present, but the cardinality of

the sources is known a priori. Level three is where any number of sources are present (this

includes the null and single source case). Level three could be further split into how well

algorithms scale with more than a few sources, but this is so far not documented well in the

literature. “Scale” in this context refers to the computational complexity of an algorithm.
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For example, the time complexity of the work in [50] scales with the number of samples n

as O(n). This is the same as most particle filters. However, in that paper, the number of

samples scales with the number of sources s as a binomial combination O
(
k
s

)
where k is

a constant related to resolution. So the performance of that algorithm would be markedly

worse than the research presented in this dissertation even though they fall in the same level

in the source cardinality category.

The isotopes category defines the degree to which complex radiation properties were

utilized. Level one indicates that no consideration was given to the effects of energy level of

the photon. This means attenuation is ignored, detector type is a counting instrument, and

effects of background are ignored or approximated. Level two indicates that the isotope

being searched for is known a priori. This usually indicates that effects of attenuation

and properties of a detector were factored in. Level three indicates that the algorithm is

able to work with unknown sources. This is distinct from simply not caring about the

isotope (isotope agnostic). Algorithms at this level are able to leverage information from

the detectors to perform isotopic identification in some way.

Another important consideration with these algorithms is what kind of measurements

they have been verified with. The relevant papers are categorized in Table 1.3. The differ-

ence between using simulated measurements and experimental measurements is explored

in this dissertation. There are many more considerations to be made when using experi-

mental measurements that can sometimes alter the overall performance of an inference al-

gorithm. The difference between using count rate instruments and spectral instruments also

affects the overall performance of an algorithm. An algorithm using counting instruments

will be fundamentally different as there will be significantly less information available.

1.3 Dissertation Overview

Chapter 2 investigates the use of multiple UAVs, each carrying several deployable and re-

coverable UGVs, to completely map a given area. The UAVs are not equipped with sensors
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Table 1.2: Categorizing references by level of assumptions made

Attenuation Source Cardinality Isotopes
1 [21], [22], [33], [35]–[41],

[43], [47], [48]
[22], [33], [35]–[43], [49] Chapter 3, [21], [22],

[35]–[44], [47]–[49]
2 Chapter 3, Chapter 4, [42],

[44], [50]
[50] [33]

3 [49] Chapter 3, Chapter 4, [21],
[44], [47], [48]

Chapter 4, [50]

Table 1.3: Categorizing references by type of measurements used

Simulated Counts Chapter 3, [37], [39], [41], [42], [44], [48]
Experimental Counts [21], [22], [35], [36], [38], [40], [47]
Experimental Spectra Chapter 4, [33], [43], [49], [50]

themselves, but rather serve as carriers to transport the UGVs to locations of interest. The

location into which the UAVs deploy the UGVs is selected through Information Theoretic

Path Planning (ITPP). Once the UGVs are deployed, they use an optimal coverage method

to map their assigned region. Simulation results measure the time required to achieve a

certain mapping accuracy (measured by the integrated squared difference, or Integrated

Squared Difference (ISD), between the actual and estimated map), and compare the map-

ping rate between the UAV-UGV team using ITPP, the UAV-UGV team using random

sampling, and a team of UGVs only. Overall, results show that the multi-agent UAV-UGV

team combines the unique strengths of UAV and UGV agents. Specifically, the UAV-UGV

team produces a map with faster ISD reduction than can be achieved with UGVs alone, and

with higher resolution than can be achieved with UAVs alone.

Chapter 3 introduces a novel particle filtering algorithm called the Dynamic Discrete

Particle Filter (DDPF). The goal of the algorithm is to find point-sources of gamma radia-

tion in a defined search area that may include obstacles and terrain features. The number,

location, and strengths of the sources is assumed to be unknown. The particle filter is

designed to fuse multiple count measurements from Geiger-Müller counters, which may

be fielded by personnel or mounted on vehicles. The DDPF improves upon existing par-

ticle filters for STE (such as that in [21]) by including two unique elements designed to
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improve runtime performance in cases with multiple sources and attenuation from terrain

and obstacles. First, there is a discrete pre-processing step in which attenuation kernels are

computed from discrete source locations to discrete measurement locations. Since attenu-

ation calculations can be computationally intensive, this pre-processing step enables heavy

computation to be done offline prior to the search, with results stored in a database for use

in online processing of measurements. Such a decomposition allows the online portion

of the algorithm to run on computationally-lightweight hardware (e.g., embedded comput-

ers) while also incorporating modeling results from complex 3-D radiation transport codes

[52], [53]. The second innovation is the dynamic adjustment of the number of particles

and their distribution over particle sets associated with different source cardinalities. This

dynamic modification of the number and allocation of particles, modeled on the algorithm

proposed in [54], allows the algorithm to handle scenarios with a large number of sources

efficiently. The DDPF is tested primarily in Monte Carlo trials using simulated count data.

The performance is also evaluated on two trials using experimentally gathered count rate

measurements.

In Chapter 4, an algorithm is presented that ranks at the most challenging level in all

categories of Table 1.2 except for attenuation modeling. Chapter 4 improves upon Chap-

ter 3 with the addition of a gamma spectrum unfolding algorithm. This allows for isotopic

identification and accurate attenuation modeling for different isotopes. To leverage this

capability, a mixing algorithm is incorporated to combine the outputs of multiple parti-

cle filters running in parallel. Each particle filter in this parallel group corresponds to a

particular isotope of interest and has an associated attenuation model of the environment.

This allows for the favorable performance with an unknown number of the same isotope as

shown in Chapter 3, but now the capabilities are extended to an unknown set of isotopes.

Chapter 3 also only dealt with simulated radiation count data. In contrast, Chapter 4

introduces improvements to handle experimental spectral data. Alongside the unfolding

algorithm, which allows the use of spectral measurements, is the introduction of the loga-
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rithmic domain. Key elements of the core particle filtering algorithm have been transformed

into the log domain. This allows for a sparser set of particles to remain useful when ingest-

ing low SNR, low accuracy measurements. Overall stability is improved in the log domain;

several edge cases and degeneracy issues are removed when compared to the linear domain

particle filters.

10



CHAPTER 2

HETEROGENEOUS MULTI AGENT SEARCH

2.1 Problem Definition

The goal of this chapter is to investigate the use of UAV-UGV teams to map an area contam-

inated by an arbitrary number of radioactive point sources. The point sources are modeled

using basic Poisson statistics ignoring obstacle attenuation. The map of the radiation field

is generated via a GPR, also referred to as Kriging, model. The UAVs and UGVs that make

up the team have different purposes to leverage their unique strengths. The UGVs are fit-

ted with a simple Geiger-Müller counter. They are responsible for taking measurements

of the radiation field because there is no energy cost for them to sit stationary and record

data (dwell time). The UAVs are responsible for transporting the UGVs and have no sen-

sors of their own. This is because dwell-time and payload constraints limit the quality of

sensing that can be conducted from the UAVs, especially in comparison with UGVs which

travel slowly and can dwell for long periods. The UAVs can carry multiple UGVs at a time

and can both deploy and recover the UGVs. Future work may investigate the benefit of

outfitting the UAVs with sensors as well to facilitate the mapping process.

2.2 Measurement and Radiation Field Modeling

2.2.1 Sensor Modeling

Particle counts due to nuclear decay can be modeled with Poisson statistics [21], [36], [55].

The mean radiation count λ due to a source s at a 3D coordinate (xs, ys, hs) at time t by a

Geiger counter located at the coordinates (x, y, h) is given by Equation (2.1):

λt = τt

[
µb +

r∑
s=1

φs

(dt)
2 e

−βdt

]
(2.1)
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where τt is the exposure time interval, µb is the average count rate due to background ra-

diation, r is the total number of sources in the environment, φs is the equivalent strength

of source s, β is the air absorption coefficient, and dt is the Euclidean distance from the

Geiger-Müller counter to the source at time t. The counts, λ, are also limited by a satu-

ration value, λsat. The saturation value is the maximum number of counts the meter can

report given the dead/recovery time. This time is usually on the order of a few hundred

microseconds, although lower dead times have been achieved [56]. A zero mean noise, vt,

of the form N (0, K) with covariance K, is added to the mean radiation count, λt. This

addition and the saturation value modification yield a simulated measurement at time t of

the form zt = max(round(λt + vt), λsat). Note that all measurements for this chapter are

assumed to take place on a plane, and thus the h axis will be neglected.

2.2.2 Gaussian Process Radiation Field Modeling

Most mapping methods rely on some type of interpolation between measured data points.

It is also possible to generate a map based on source parameters from STE using a model

of how sources behave in the environment. This is called “inverse mapping.” The spatial

distribution of the measurements, the accuracy of the measurements, and the method of

interpolation determines the map’s utility. Gaussian Process Regression is a method of

interpolation that, under certain conditions, yields the best linear unbiased prediction at

unsampled locations [57]. GPR also provides prediction intervals that can be used as a

measure of uncertainty. This characteristic is particularly important for information-driven

search algorithms. Numerous authors have used GPR representations to build maps of

radiation fields [15], [58], [59]. GPR algorithms for informative sampling that are designed

to be updated online as measurements are gathered have also been documented [60], [61].

The GPR model used in this work is implemented in the MATLAB Statistics and Ma-

chine Learning Toolbox [62]. The measurements, w, at a point in space (x, y) are used

as training data for the model, and the estimated particle counts, zgpr, at any sample ref-
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erence point (xgpr, ygpr), can be sampled from the continuous distribution GPR. Although

effective from a modeling perspective, this method is not computationally efficient and

modifications to this formulation of GPR are being explored.

This toolbox generates a GPR model of the vector form given in Equation (2.2), where

x is the input variable, y is the response variable, f(x) ∼ GP (0, k(x, x′)), i.e. f(x) is

sampled from a zero mean GP with covariance function k(x, x′), h(x) are a set of basis

functions that transform the original vector x into a new feature vector h(x) in Rd, and B

is a p-by-1 vector of basis function coefficients.

P (y | f,X) ∼ N
(
y | HB + f, σ2eye

)
(2.2)

X =



xT1

xT2
...

xTn


, y =



y1

y2
...

yn


,

H =



h
(
xT1
)

h
(
xT2
)

...

h
(
xTn
)


, f =



(x1)

(x2)

...

(xn)


Using a GPR model as the agents explore the space gives a map that can be used while

the search is still in progress. A GPR model is most certain at measured values, and its

certainty would fall off further from measurements. A GPR cannot extrapolate as there is

no radiation model encoded into the GPR; it is non-parametric. The GPR model will also

not return true source locations or parameters. A particle filter is used in later chapters on
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the measurements to give true source locations and parameters [41].

2.2.3 Integrated Squared Difference Error Metric

A primary goal of this work is to evaluate the accuracy of the map produced by the multi-

agent team. While numerous potential metrics may be used, in this paper mapping error

is quantified using the ISD between the GPR approximation of the radiation field and the

actual radiation field. A discrete approximation to the ISD is provided in Equation (2.3).

In a grid of n1 × n2 locations (denoted by coordinates (xi, yj)), the difference between

the GPR model predicted counts and the true reference model counts are squared and then

summed for all locations in the grid. The reference counts are given by taking a zero noise

measurement using the radiation measurement model, zref (xi, yj) = round(λ(xi, yj)).

ISD =

[
n1∑
i=1

n2∑
j=1

[wgpr(xi, yj)− wref (xi, yj)]
2)

]
1

n1n2

(2.3)

2.3 Path Planning Algorithms

The two types of robots that make up the team of agents in this work – UAVs and UGVs

– serve very different roles in the scenario envisioned here. The UAVs are responsible for

selecting the subregion that the UGVs will map next, while the UGVs need to map the

assigned subregion as efficiently as possible. Thus, the UAVs use an information-driven

search approach, while the UGVs use a coverage path planning algorithm to optimally map

the assigned subregion. Note that for this chapter, the region to be mapped is assumed to

be rectangular, flat, and obstacle-free. Later chapters relax these assumptions to consider

more realistic terrain and obstacle environments.

2.3.1 Information Theoretic Path Planning

Various methods of quantifying information gain are available for an information-driven

search. Commonly used methods include Fisher information [41], entropy [63], Kullback-
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Leibler (KL) divergence [64], and Rényi divergence [21], [64]. Gaussian Process Regres-

sion for ITPP of multi-vehicle autonomous teams has been explored previously [60], [61]

with favorable results. The measure of information gain used in this paper is the prediction

interval given by the GPR model. The prediction interval can be thought of as a measure

of uncertainty in the model. Areas where the prediction interval, i.e. uncertainty, are high

correspond to areas that have few or noisy measurements. Decreasing this uncertainty leads

to a higher-quality model while simultaneously incentivizing coverage of the environment.

The information theoretic path planner in this paper seeks to maximize a reward func-

tion along a path for multiple agents. A simple myopic path planner is used to select the

next subregion that the UAVs will search. Prior to the mapping process, the total area to

be mapped is decomposed into a set of Ns subregions. These subregions are labeled Ri

where i = {1, ..., Ns}. The goal of the UAV planner is simply to select the next subregion

in which to deploy its UGVs. Thus, at the beginning of the scenario the UAVs make initial

decisions about which subregion to visit. Once mapping is completed in that subregion,

they recover their UGVs and select a new subregion. This region selection and mapping

process continues until there are no more subregions to be mapped.

The subregion selection process proceeds as follows. Consider the kth UAV. Let the

current region being mapped by UAV k be denoted as R(k), and let the next subregion

selected for mapping by UAV k be denoted as R(k∗). At the current time, the prediction

interval in each subregion is computed from the GPR. To compute the prediction interval,

the average upper and lower 95% confidence intervals are calculated over each subregion,

denoted as ui and li, respectively. Then, define a reward function as,

C(Ri) = Q(ui − li)− Pd(R(k) −Ri) (2.4)

where d(R(k)−Ri) is the Euclidean distance between the centroids of regions R(k) and Ri.

In Equation (2.4), Q and P are tunable positive constants. The kth UAV then selects the
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next subregion to map as,

R(k∗) = arg max
Ri∈R

C(Ri) (2.5)

where R is the set of subregions that have not been mapped.

The Q and P values in Equation (2.4) capture the tradeoff between prioritizing areas

with high uncertainty and penalizing areas that are far from the current UAV location. If

P is very high compared to Q, the UAVs will simply select the nearest available subregion

to search, regardless of the degree of uncertainty in the radiation field. In the limit that P

is set to zero, the UAVs may expend significantly more energy than necessary to map the

area by flying back and forth across the domain repeatedly. In practice, these constants

need to be tuned based on the specific scenario and the degree to which battery limitations

constrain the flight times of the UAVs. Robust tuning of these parameters would require

the development of an outer-loop optimizer. The parameters selected for the simulations in

this work were tuned through numerous trials on a trial and error basis.

2.3.2 Coverage Path Planning

There are a plethora of approaches to coverage path planning [25]; however, for the flat and

obstacle-free area considered here the simplest optimal path is given by a Boustrophedon

cellular decomposition [65]. The Boustrophedon path (translated as “way of the ox”) is a

back and forth pattern that traverses the space. Other space-filling curves, such as the Peano

curve or Hilbert curve, can cover the space in the same distance travelled, but, subjectively,

are not as simple as the Boustrophedon path. Given a rectilinear grid of search points

generated by some metric such as effective sensor radius, the Boustrophedon path can be

generated to visit and take a measurement at each point. This is the job of the UGVs

which are assigned to map a subregion of the domain. They further divide this subregion

between the UGVs that are deployed to the area by a UAV. Each UGV then executes a

Boustrophedon path in its assigned area of the subregion. Upon completion of the mapping

task, the UGVs rendezvous for pickup by the UAV, to be transported to the next subregion.
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2.4 Simulation Experimental Setup

2.4.1 Setup

A Monte Carlo experiment was performed consisting of 1,000 simulations. Each individual

simulation a took place in a 100 m by 100 m search area with three randomly-generated

point sources. In the figures below, these point sources are labeled as red dots. The sources

have an equivalent strength that is randomly-generated between 500 and 2,500 counts per

second. The UAVs are assumed to fly at a speed of 5 m/s, and the UGVs drive at a speed of

0.5 m/s. The deployment of UGVs from a UAV takes 5 sec, and the loading of UGVs onto

UAVs takes 10 sec. Measurements take 20 sec at a given point. These values can be tuned

to compare the performance of the UAV-UGV teams with a UGV-only control experiment.

The subregion selection algorithm uses values of Q = 3 and P = 1.

At the beginning of the simulation, three UAVs start at the origin, (0,0), each with three

UGVs on-board for a total of nine UGVs. The search area is divided into a grid of 100

subregions (Ns = 100) for the UGVs to search once deployed by the UAVs. In order to

spread the UAVs around the space initially, they are commanded to fly to starting locations

which are determined as the centroids of a centroidal Voronoi tessellation of the domain

generated using the number of UAVs. The subregion within which these centroids lie is

the initial subregion for each UAV. Upon arrival at the initial subregion, the UGVs are

deployed and perform a Boustrophedon search, taking measurements every 1 m. After the

UGVs finish taking measurements, they are reloaded onto the UAVs. The next subregions

visited by the UAVs are determined by the information-driven planning method described

previously, and the UGVs are deployed again. As this cycle repeats, the paths, GPR model,

and ISD are recalculated continuously. The simulation proceeds until all of the subregions

have been mapped.

Comparison simulations are performed for a UGV-only team, and also for a UAV-

UGV team that performs random search area selection rather than ITPP. In the UGV-only
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experiments, the entire search area is treated as a single UGV subregion and thus the UGVs

are deployed into a Boustrophedon path to cover the entire space. The number of UGVs,

density that the UGVs take measurements, the UGV speeds, and all other parameters are

the same as they are in the UAV-UGV experiments. For the UAV-UGV team experiments

with random search area selection, the next area in which the UGVs are deployed is selected

via uniform random sampling rather than the ITPP scheme described above. Comparison

against the UGV-only team is designed to isolate the benefit of UAV rapid mobility, while

comparison against the UAV-UGV team with random sampling quantifies the benefit of the

ITPP scheme.

2.4.2 Individual Example

Figures 2.1-2.4 show an example simulation for the UGV-only team (Figure 2.1) and the

UAV-UGV team executing ITPP (Figures 2.2-2.4). The red dots denote the randomly-

generated source locations, the blue lines in Figures 2.1 and 2.2 denote the UGV paths,

and the red lines in Figure 2.2 denote the UAV paths. Figure 2.3 shows the GPR model

at one instant during the simulation, where the 95% confidence bounds are also shown.

Figure 2.4 shows a time history of the ISD for the UGV-only and UAV-UGV team. Note

the rapid ISD reduction achieved by the UAV-UGV team in comparison to the UGV-only

team. The UAV-UGV team reaches an ISD of 12 (representing an 80% reduction) in only

1,211 sec, compared to 2,039 sec for the UGV-only team. This rapid reduction in the ISD,

which results in the production of a more accurate radiation map in a shorter amount of

time, is the result of being able to transport the UGVs to high-priority search locations

quickly combined with an information-driven search technique that prioritizes uncertainty

reduction.
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Figure 2.1: UGV-only Search Paths at 435 sec.

2.5 Results

For each trial, the mapping problem was solved separately using the UAV-UGV team with

ITPP, the UAV-UGV team with random area selection, and the UGV-only team. ISD

time histories for each of the UAV-UGV (with ITPP), UAV-UGV (with Random Sampling

(RS)) and UGV-only experiments were recorded. Note that these ISD histories can change

substantially depending on the source locations, hence the need for Monte Carlo analysis.

The ISD histories for each trial were averaged at each time instant, producing average

ISD histories for the UAV-UGV team with ITPP, UAV-UGV team with random selection,

and UGV-only team. In addition, the standard deviation of the ISD from these average val-

ues was calculated. Figure 2.5 shows the average ISD and +1 standard deviation bounds

for this Monte Carlo simulation (−1 standard deviation bounds are not shown in order to

reduce clutter). These results show a linear decay rate for the error in the UGV-only exper-

iments. Both UAV-UGV team experiments seem to exhibit an approximately exponential
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Figure 2.2: UAV-UGV Team Search Paths at 435 sec.

decay rate in the error, but the ITPP results exhibit a noticeably faster decay rate.

On average, the simulations reached an 80% reduction of the ISD in 783 sec for the

UAV-UGV team using ITPP, 1,371 sec for the UAV-UGV using random selection, and

1,829 sec for the UGV-only team. An ISD reduction over 95% (this representing total

area coverage) was reached in roughly equal times on average between the UAV-UGV

team with ITPP (2,483 sec) and the UGV-only team (2,277 sec), although the UAV-UGV

team using random selection took noticeably longer on average (3,454 sec). The roughly

equal performance of the UGV-only team occurs with respect to this 95% reduction metric

because the Boustrophedon path will cover the entire area more quickly as it is an optimal

coverage path.

Overall, these results illustrate the benefit of leveraging UAVs as transportation plat-

forms for UGVs tasked with radiological mapping, particularly in instances where it is

important to obtain a radiation map as quickly as possible. The benefit of both the UAV

mobility concept, as well as the ITPP algorithm, is captured in the average time to 80%
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Figure 2.3: GPR Radiation Model at 435 sec.

ISD reduction results. The UAV-UGV case using random sampling improves upon the

UGV-only result by an average of 458 sec, isolating the benefit of using UAVs for mobil-

ity. Furthermore, the UAV-UGV case using ITPP improves upon the random area selection

case by a further 588 sec on average, isolating the benefit of using the information-driven

search approach. The combined use of UAVs for mobility and the information-driven

search algorithm therefore yield a significant improvement in time-to-map compared to

a basic UGV-only scheme. Future work may investigate the benefits of also equipping the

UAVs with radiation sensors, as well as an alternative team arrangement in which UGVs

act as carrier platforms for teams of deployable and recoverable UAVs that execute the

radiation mapping task.

21



Figure 2.4: ISD vs Time for Example Simulation.

Figure 2.5: Average ISD (solid) and +1 Standard Deviation (dashed) vs time for Monte
Carlo study comparing UAV-UGV teams using ITPP and RS with a UGV-only team.
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CHAPTER 3

DYNAMIC DISCRETE PARTICLE FILTER

3.1 Problem Definition

The goal of this chapter is to introduce a particle filtering algorithm that can characterize

an unknown number of point sources of a single known isotope. This algorithm performs

source term estimation in contrast to the previous chapter which was concerned more with

mapping and coverage. This chapter refines the measurement model for simulated mea-

surements. While the previous chapter used Gaussian noise combined with a saturation

threshold to approximate a measurement, this chapter uses a “saturated” Poisson distribu-

tion. This is a more realistic approximation of counting measurements.

Consider a search volume A containing known obstacles, terrain, and constant back-

ground radiation µb. The coordinate system is defined as (x, y, h) with respect to a local

ground frame, where x and y represent Easterly and Northerly directions, respectively, and

h is height above a reference altitude. There are an unknown number rtrue > 0 of sources

of gamma radiation present in A. Point sources are indexed by s ∈ {1, ..., rtrue}.

Each point source is parameterized by both its spatial coordinates (xs, ys, hs) ∈ A and

its equivalent strength φs. The equivalent strength as shown in Equation (3.1) accounts for

the source’s activity, A, the detector’s intrinsic efficiency ϵin, and the detector’s geometric

efficiency given a cross sectional area Ad and calibrated distance to the source rd [66].

This value is traditionally given at rd = 1 m. A set of K measurements, indexed by k ∈

{1, ..., K}, are taken in the space and parameterized by spatial coordinates (xk, yk, hk) ∈ A

and value zk ∈ N which represents the total number of counts observed over time interval

τ .
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φs =
AϵinAd

4πr2d
(3.1)

The problem statement is then to infer the source parameters (xs, ys, hs) and φs ∀ s

given the measurements. Furthermore, for the purposes of this work, it is desired that esti-

mates for the source parameters be updated in real time as new measurements are gathered.

As mentioned in Chapter 2, the likelihood of measuring z counts during time interval τ

from a source emitting an expected count rate µ at a given measurement location is Poisson

distributed [21], [36], [55]. Specifically, given the expected number of counts λ = µτ ,

an idealized measurement ζ is drawn from Equation (3.2) where P denotes the Poisson

distribution. However, due to the effects of saturation, the actual measured value z is given

according to Equation (3.3) which means that z is not necessarily Poisson distributed and

is instead sampled from a saturated Poisson distribution P̃ with parameters λ and λsat as

shown by Equations (3.4) and Equation (3.5),

ζ ∼ P (λ) (3.2)

z = min (ζ, λsat) (3.3)

z ∼ P̃ (λ, λsat) (3.4)

P̃ (z;λ, λsat) =


P (z;λ) z < λsat∑

z≥λsat

P (z;λ) z = λsat

0 z > λsat

(3.5)

where λsat is the detector saturation value. This is the maximum number of counts the

detector can report given its dead/recovery time, which is usually on the order of a few

hundred microseconds [56]. As the radiation field propagates through the environment, the

expected count rate µ is subject to attenuation through the phenomena of absorption and

scattering.
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Figure 3.1: Overview of Dynamic Discrete Particle Filter algorithm.

3.2 Methodology

3.2.1 Overview

The structure of the DDPF proposed in this work is shown in Figure 3.1. Two innova-

tive aspects of the algorithm are highlighted. First, prior to gathering measurements, a

radiation transport model is used to compute so-called “attenuation kernels”. This pre-

computation is meant to be done offline using a transport model of any desired complexity.

As described in Section 3.2.2, the attenuation kernels encode radiation transport modeling

from a discrete set of candidate source locations to a discrete set of measurement loca-

tions. These attenuation kernels are used online, as measurements are taken, to perform

recursive Bayesian estimation via sequential Monte Carlo methods (i.e., particle filtering).

During the estimation process, the particle filter uses the Dynamic Particle Count Adjust-

ment (DPCA) algorithm based on [54] to adjust the number of particles in order to balance

speed and accuracy. This element comprises the second major innovation of the DDPF

design. The current best estimate of the source terms is updated online, as new measure-

ments are gathered, via maximum a posteriori estimation applied to the particle set. The

various algorithm components are described in detail below with an emphasis on the novel

elements.

Prior to describing each algorithm component, several brief definitions are provided.
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Since the particle filter is updated after each new measurement, iterations of the algorithm

correspond to the current measurement index k. The particle filter uses a set of N particles

Xk, indexed by n ∈ {1, ..., N}. A single “particle” at iteration k, denoted X
(n)
k , consists of

a source parameter matrix θ and weight w, and this particle represents a single hypothesis

for the solution of the STE problem posed in Section 3.1. Unlike other particle filters

designed for STE [22], [36], [38]–[41], [44], [50], a particle in this work can represent

a combination of any number of sources, r ∈ {1, ..., rmax}. Note that in this work, the

null hypothesis of no sources present (r = 0) is excluded (which differs from [21]). The

source parameter matrix for each particle is an r × 3 matrix, θ = (θ1, · · · , θr), where each

row is a 1 × 3 source parameter vector θs = [xs, ys, φs] representing an individual source

hypothesized by the particle. It is assumed that all sources lie on the terrain surface, and

thus the height coordinates of the sources hs = hs (xs, ys) are not included as independent

parameters.

3.2.2 Precomputation of Attenuation Kernels

Let X(n)
k be an arbitrary particle at iteration k, and let measurement zk be taken at coordi-

nate (xk, yk, hk). Define λ(X(n)
k ) as the expected counts observed at location (xk, yk, hk)

due to the sources described by Xk as,

λ(X
(n)
k ) = µk,nτ (3.6)

where µk,n is the expected count rate due to the arbitrary particle X(n)
k . Then the likelihood

of observing zk given λ(X(n)
k ), including the effects of detector saturation, is given by the

saturated Poisson distribution, P̃ ,

p
(
zk|X(n)

k

)
= P̃

(
zk;λ

(
X

(n)
k

)
, λsat

)
(3.7)

The particle filter requires that the likelihood in Equation (3.7) be computed at least
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N + NS times every time a new measurement is obtained, where N is the number of

particles and S is the number of progressive correction stages (described in Section 3.2.3).

Computing λ(X(n)
k ) requires knowledge of the expected count rate µk,n given the source

parameters in X
(n)
k . In settings involving obstacle and terrain occlusions, µk,n must be

determined via a radiation transport model. Such models exhibit varying levels of fidelity

(e.g., [52], [53]), but in general models that capture complex phenomena such as obstacle

absorption or scattering can be so computationally intensive that they are infeasible to run

online N +NS times every time a measurement is obtained.

To address this computational bottleneck, the proposed DDPF replaces online radiation

transport modeling with offline transport modeling over a set of hypothesis-measurement

pairs. The linear relationship between source strength and expected count rate that the

kernels exploit allows the online likelihood calculation step to be reduced to a simple linear

algebra operation. First, the search volume A is discretized into a set of I discrete source

locations and J discrete measurement locations. Second, a so-called attenuation kernel

Θi,j is defined between source location i ∈ I and measurement location j ∈ J ; this kernel

models the effects of attenuation, reflection, transmission, etc. These sets of locations need

not be on regular grids, but are for the results presented in this paper. Then the expected

count rate µ̂k,n,j due to particle n at iteration k, not accounting for background interference,

at location j is given by,

µ̂k,n,j =

rk,n∑
s=1

φ
(n)
k (s)Θi,j (3.8)

In (3.8), rk,n is the maximum number of sources hypothesized by particle X
(n)
k , and

φ
(n)
k (s) is the strength of hypothesized source s of particle X

(n)
k . The expected count rate

accounting for background radiation is then be obtained as,
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µk,n,j = µb + µ̂k,n,j (3.9)

where µb is the average count rate due to background radiation.

Each time a new measurement is obtained, the particle filter computes the likelihood

associated with all N particles. This likelihood calculation requires that the expected

count rates for all particles be recomputed and compared with the observed count rate.

The simplicity with which the expected count rates can be computed using the atten-

uation kernels makes this process fairly trivial computationally. Define vector Θk,n =

[Θi(k,n,1),j, · · · ,Θi(k,n,rk,n),j] where i(k, n, s) is the source location of source s of particle

X
(n)
k . Likewise, define vector φk,n = [φ

(n)
k (1), · · · , φ(n)

k (rk,n)]. Then, using Equation (3.8),

the expected count rates for all particles can be computed at the kth measurement update

(assumed to occur at location j) through the following N inner products:


µ̂k,1,j

...

µ̂k,N,j

 =


Θk,1·φk,1

...

Θk,N ·φk,N

 (3.10)

Note that Equations (3.8) and (3.10) only make sense if source locations in each hy-

pothesis X
(n)
k are restricted to lie at locations in I. This assumption enables radiation

transport modeling to be shifted offline, allowing for arbitrarily complex models to be used

in real-time filtering. In practice, the discretization of A limits the spatial accuracy that

can be achieved by the filter, and thus the resolution of the discretization must be chosen

such that the solution for the source locations meets the desired precision requirements. An

obvious trade-off exists between the spatial precision that can be achieved and the num-

ber of attenuation kernels that must be computed offline and stored. Note that, while the
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source locations are converted to discrete variables, the source strengths remain continuous

variables.

For purposes of illustration, a simplified radiation transport model as described in [66]

and [67] is used in this paper. Given a set of sources, s ∈ {1, ..., r}, the expected count rate

observed at a particular location (x, y, h) is given by,

µ = µb +
r∑

s=1

φs

(
rd
ds

)2

e−βmdds (3.11)

where ds =
√

(x− xs)2 + (y − ys)2 + (h− hs)2. In (3.11), βmd is the absorption coeffi-

cient of the medium. The absorption coefficient varies with the gamma-ray energy level,

so attenuation kernels will be specific to a given isotope (or set of isotopes with similar

energy photopeaks). When using a single set of kernels to model attenuation from multiple

isotopes with different energy spectra, some error mitigation may be achieved by taking

multiple measurements across the domain. This is explored further in Section 3.4.4.

Since the path from measurement to source may pass through various media, Equa-

tion (3.11) is only valid along paths with a constant βmd. One method to handle this is

through ray tracing (or casting) [49], [51]. In this work, ray tracing is used to compute

the attenuation kernels from a grid of possible source locations to a grid of measurement

locations. This process is depicted in Figures 3.2 and 3.3. In Figure 3.2, the source grid is

shown with light dots, and the measurement grid is shown with heavy dots. Starting from

the source location, a ray is cast to the measurement location and the intersections where

the ray passes through obstacles of different absorption coefficients are recorded (dashed

lines in Figure 3.3). Using a reference source strength of φs = 1 at the source location,

Equation (3.12) is used to compute a count rate at the first intersection using the βmd value

of the first region (initial red line in Figure 3.3 from 0-20 m).
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µs = φs

(
rd
ds

)2

e−βmdds (3.12)

Then, a new equivalent source strength is computed by solving Equation (3.12) using

the βmd of the next segment and the count rate at the first intersection. These two steps

are repeated consecutively over all segments until the measurement location is reached,

resulting in a count rate at the measurement location (µi,j) given a unit source at the original

source location. The attenuation kernel is then simply Θi,j = µi,j . While this ray tracing

approach is used here to compute the attenuation kernels, any radiation transport model of

desired complexity may be used as discussed above.

The ray tracing approach described in this section requires knowledge of obstacle

boundaries. In some scenarios, obstacle locations may be known precisely from detailed

site surveys, while in others data may be obtained from Geographic Information System

(GIS) databases such as OpenStreetMaps (OSM) [68] or via LiDAR measurements of the

environment.

Ray Tracing Optimizations

Because Particle Filter (PF)s test thousands of source hypotheses, we must find the inter-

sections of thousands of rays with many polyhedrons each time the likelihood of a particle

is computed. This is a large computational burden. We use two methods to counter this.

First, obstacles are assumed to be prisms in this work because they are buildings. This

allows us to cull buildings if their 2D cross section and a projection of the ray do not inter-

sect. Second, obstacle intersections do not need to be checked if they do not lie in the path

of the ray; this is similar to the computer graphics technique, Viewing-Frustrum Culling

(VFC) [69].

We perform an analogous technique to VFC. For each obstacle, the minimum and maxi-
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Figure 3.2: Example of discretized ray tracing over source and measurement grids.

Figure 3.3: Example of count rate values computed along ray.
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Figure 3.4: Illustration of obstacle culling parameters.

mum azimuth (ψmin, ψmax) and smallest projected distance ρmin of each vertex is found rel-

ative to a source location. The ray of interest from source to measurement is also expressed

in polar coordinates (ρray, ψray). Candidate intersection obstacles satisfy ρmin < ρray and

ψmin ≤ ψray ≤ ψmax. This is shown in Figure 3.4 where the filled shape is the obstacle,

the white circle is the source, and the white diamond is the measurement. This example is

an edge case—this obstacle would not be culled even though doesn’t intersect the ray. This

is acceptable considering the alternative where obstacles that intersect the ray are culled.
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3.2.3 Particle Filter Update Step

Algorithm 1 Particle Filter Update Step
1: function Xk = UPDATE(Xk−1, z)
2: X = Xk−1

3: for r = 1, ..., rmax do ▷ Begin Progressive Correction (PC)
4: m = 0
5: for n = 1, ..., N do
6: if size(X, 2) = r then
7: m = m+ 1
8: I(m) = n
9: Y (m) = X(n)

10: end if
11: end for
12: Select coefficients γs s.t.

∑
s
γs = 1

13: for s = 1, ..., S do
14: Mr = m
15: for m = 1, ...,Mr do
16: w(m) = C∗ Likelihood (X(m), z)γs

17: end for
18: Resampling: Y = Resample(Y ,w)
19: Regularization: Y = RegularizeParams(Y )
20: end for
21: for m = 1, ...,Mr do
22: X(I(m)) = Y (m)

23: end for
24: end for
25: for n = 1, ..., N do ▷ Begin FF
26: w(m) = C∗ Likelihood (X(n), z)
27: end for
28: Resampling: X = Resample(X ,w)
29: Regularize R: X = RegularizeR(X)
30: Xk = X
31: end function
32: function w = LIKELIHOOD(X , z)
33: wlast = 1
34: for k = 1:K do
35: w = wlast ∗ p(zk|X)
36: wlast = w
37: end for
38: end function

Initialization

The filter is initialized by sampling N particles. Each particle has an associated source

cardinality r. In [21], the r values are sampled uniformly from the integers in the set

{1, · · · , rmax}. While this correctly models the fact that the source cardinality is (pre-
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sumably) unknown a priori, as the number of sources grows, the spatial coverage of the

particle set becomes very poor in high dimensions. For example, 100 particles may be

adequate to represent possible source locations in a 2-dimensional space, but 100 particles

in a 6-dimensional space results in extremely sparse coverage of the spatial domain. Better

results were obtained by initializing the particle set such that the number of particles allo-

cated to higher dimensions grows exponentially with r. Specifically, r is sampled from a

probability distribution wherein the probability of selecting r = r′ is given by

P (r = r′) = pr
′

(3.13)

where r′ ∈ {1, · · · , rmax} and p is the solution to

1 =
rmax∑

r=rmin

pr (3.14)

The maximum source cardinality rmax is chosen by the operator based on external infor-

mation about the number of possible sources for which to search. Given N particles, each

with a sampled r value, the spatial coordinates of each source for each particle may be

sampled from uniform distributions dictated by the boundaries of A. Likewise, the source

strengths may be sampled from a uniform distribution within selected minimum and maxi-

mum values. Note that additional a priori information may of course be used to change the

initial sampling approach as desired in a specific scenario.

Likelihood Calculation

Algorithm 1 shows the particle filter update (i.e., Bayesian inference) step, which is exe-

cuted every time a new measurement zk is obtained. The algorithm takes as input all past

measurements z and the source parameter hypotheses at the previous update step, denoted

Xk−1. The update step outputs an updated set of hypotheses (particles) given the current

measurement. There are three critical operations in the update step: likelihood computa-
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tion, resampling, and regularization.

The likelihood computation steps are shown in Algorithm 1, line 32. This is accom-

plished using Equation (3.7) which shows that the probability of a measurement given a

source parameter array X is given by sampling a saturated Poisson distribution with pa-

rameter λ found by using Equation (3.6). This computation is not just performed on the

current measurement but on all past measurements for a given particle. Since each mea-

surement is independent of the others, the probabilities of each measurement resulting from

a given particle can be cumulatively multiplied together. This returns the probability that

every measurement could have come from the given particle. The reasoning for using all

the measurements (prior and current) is explained further in Section 3.2.3. The particle

weights are found by normalizing the probabilities of each particle by a constant, C, such

that the weights sum to one.

Resampling Algorithm

The second critical operation is resampling as shown in Algorithm 1, lines 18 and 28.

Systematic resampling [70], [71] is used. This process involves computing the cumulative

sum vector of the weights and using it to build a vector of indices representing the particles

to be resampled.

The vector of the cumulative sum of the weights, Ω, has elements given by Ωn =∑(n)
i=1wi. N ordered random numbers, un, are generated according to Equation (3.15). For

each un, the first index, i, where un > Ωi is found and recorded. This makes an n×1 vector

of non-unique indices where each unique value represents a particle to be resampled.

un =
(n− 1) + ũ

N
, ũ ∼ U [0, 1), n = {1, ..., N} (3.15)
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Regularization

The final major element of the update step is regularization (lines 19 and 29 of Algorithm

1). In line 19, the parameters themselves are regularized. Each parameter, xs, ys, and

φs is perturbed by a Gaussian kernel, ν ∼ N (0, σ); hs is not directly perturbed as the

terrain dictates the mapping from (xs, ys) to hs. Here, σ is selected as either σx,y or σφ,

which are the variances for the spatial coordinates and source strengths respectively. In the

discrete PF, the spatial parameters are fixed to a grid of points, and during regularization,

the new perturbed coordinates are rounded to the nearest discrete point. Regularization

helps counter particle degeneracy [72] by increasing particle coverage. A variance that

is too small will result in insufficient coverage of the space for small numbers of particles,

while a variance that is too large invalidates the Markov assumption: particles could retread

old ground, losing information from past measurements. In this work, a larger variance

is selected for greater coverage, and an informed “retraining” step is added to overcome

information loss. Informed retraining is a strategy wherein the weights of the particle set are

computed based on a selection of prior measurements instead of just the most recent one. In

this work, since the set of measurements is limited and the search space is relatively small,

all previous measurements are used for retraining. Note that this retraining step is further

enabled by the ability to rapidly compute the expected count rates using the attenuation

kernels per Equation (3.10) — this step would be far more expensive if complex transport

models had to be used online.

Regularization is also performed on the estimated number of sources r for each particle

(line 29 of Algorithm 1). This creates a small probability of increasing or decreasing r for a

particle based on tunable parameters pup and pdn, which represent the probability of adding

a new source or removing a source from the particle, respectively. A new source is added

to a particle by copying a source, selected uniformly at random, from the combined set of

all hypothesized sources in the PF. When removing a source, a source is selected uniformly

at random from those of a given particle and removed.
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Progressive Correction

PC is a stochastic form of the particle flow with log-homotopy designed to reduce particle

degeneracy [73]–[75]. More particles survive the correction step, which is the combination

of the regularization and resampling steps, during PC because the variance in the likelihood

is reduced by the exponent γs. Essentially, PC splits the correction step into several smaller

substeps. The progressive correction step begins on line 3 of Algorithm 1. Note that the

particles are only competing against particles of the same source cardinality, which is in

contrast to full field correction in line 25, where all particles compete against all other

particles. Normally, PC is a substitute for the correction step. In this case, since PC is

performed separately for each source cardinality hypothesis, the full field correction is

needed to allow particles of different source cardinalities to compete against each other.

Maximum A Posteriori Estimate

The posterior Probability Density Function (PDF) for all measurements up to step k, p(Xk|z1:k),

is approximated by the empirical distribution of particles {w(n),X
(n)
k }Nn=1, wherew(n) is the

weight of the nth particle. The Maximum A Posteriori (MAP) estimate for a source param-

eter is the mean of the marginal PDF of the parameter—since the weights are uniform after

each update step, this simplifies to the mean of the given parameter across the particle

set. The first step in estimating the source parameters from the particle set is to find the

estimated source cardinality according to

r̂ = nint

(
1

N

N∑
n=1

∣∣∣X(n)
k

∣∣∣) (3.16)

where | · | extracts the cardinality, or number of sources, of a particle and nint() is a function

that rounds to the nearest integer. Then, particles for which r ̸= r̂ are removed from the

particle set and k-means clustering is performed on the remaining particles where k = r̂.

These clusters represent individual location and source strength hypotheses for each of the
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identified point sources. The MAP estimates of (xs, ys, φs) are then found as the centroid

of each cluster. The heights of each source may then be estimated by interpolating a terrain

map using the MAP estimates of xs and ys.

3.2.4 Dynamic Particle Count Adjustment Algorithm

The number of particlesN is a tunable parameter with well-known trade-offs between com-

putational burden (high N ) and inaccurate estimates due to sparse coverage of the domain

(low N ). Elvira et al. [54] developed an algorithm to dynamically adapt N in response to

estimates of filter convergence as measurements are gathered. This method was shown to

effectively balance the trade-offs between computational burden and performance. In the

context of this chapter, the ability to accurately identify large numbers of sources in the

environment (e.g., more than five) hinges on use of a sufficiently large number of particles

that produce adequate spatial coverage. By dynamically adjusting N , the filter maintains

sufficient coverage when initial measurements are gathered but is not saddled with large

numbers of extraneous particles later on, once the particles converge to the likely source

parameters. In this and the following chapter, convergence is defined as the degree to which

the PF can explain the measurements (e.g., “converged” indicates all measurements could

feasibly have come from the PF’s hypotheses).

A Dynamic Particle Count Adjustment (DPCA) algorithm is developed in this work

based on [54]. This method, shown in Algorithm 2, is executed after the PF’s update step.

All of the measurements taken up to the latest measurement step k are used. This set of

measurements is denoted as Z1:k = {z1, · · · , zk}. Each measurement is paired with a set

of fictitious measurements Z̃ = {z̃1, · · · , z̃J} drawn from J particles randomly and uni-

formly sampled from the PF (line 5) to compute a set of the negative log Poisson likelihoods

Q = {q1, · · · , qk} (line 8) that each of the true measurements could have come from the

set of fictitious measurements given by the PF. The set is represented by its mean measure-

ment value, z̄. Using a negative log likelihood means that a higher value represents a less
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likely source configuration. The maximum value of Q, qmax, is compared to tunable qh and

ql values, and the particle count is increased or decreased according to tunable functions fh

or fl (Lines 20 and 25). If more particles are added, they are added according to the initial-

ization function used at the start of the PF algorithm (line 21). If the number of particles

decreases, they are randomly and uniformly removed (line 26). Tuning J , qh, ql, fh, and

fl is required to achieve a suitable balance between runtime and accuracy; for example,

a higher qh indicates a higher tolerance for unlikely particles, and a more aggressive fh

—meaning one that adds a larger number of particles when qmax > qh— would prioritize

accuracy over runtime.

Algorithm 2 Dynamic Particle Count Adjustment algorithm
1: function Xk = DYNAMIC(Xk, Z1:k)
2: for κ = 1 : k do
3: for j = 1 : J do
4: i ∼ U{1, N}
5: z̃j ∼ p

(
zκ|X(i)

k

)
6: end for
7: z̄ = mean({z̃1, · · · , z̃J})
8: qκ = − log P̃(zκ; z̄, λsat)
9: end for

10: qmax = max(Q)
11: if qmax > qh then
12: X,N = fup(X,N)
13: end if
14: if qmax < ql then
15: X,N = fdn(X,N)
16: end if
17: Xk = X
18: end function
19: function [X,N ] = fup(X,Nold)
20: N = fh(Nold)
21: Xnew = initialize(N −Nold)
22: X = Xnew ∪X
23: end function
24: function [X,N ] = fdn(X,Nold)
25: N = fl(Nold)
26: s ∈ N, s ∈ [1, N −Nold]
27: X = X(s)

28: end function
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Figure 3.5: Search area for simulation trials. (left) Satellite view of search area with build-
ings outlined in green. (center) Ray-traced radiation intensity from three example sources
(red = high intensity). (right) Combined plot of radiation and environment.

3.3 Simulation Experimental Setup

3.3.1 Setup

Monte Carlo simulation results are presented in the next section to demonstrate the per-

formance of the algorithm and to compare it to the particle filter design in [21]. All of

the results in this paper use the search area shown in Figure 3.5, which measures 100m ×

200m. Building footprints were obtained from OSM [68], and for ease of implementation

were treated as solid structures. Furthermore, the terrain in this example location is rela-

tively flat, so for the purposes of this work all terrain and source heights are assumed to

be zero. Buildings are modeled as prisms such that the ground footprint extends upward

uniformly to the building height. Building height data was taken from OSM, and buildings

without height data were assumed to be 4.3 m tall.

The attenuation kernels were calculated across this domain at a grid of 44 measure-

ment locations and 4,900 possible source locations. The number of measurements was

40



chosen to be as sparse as possible considering the range of possible source strengths and

the size of the environment. This is why it is much less than the number of possible source

locations, which was chosen to allow for a high-resolution solution. The assumed mea-

surement height was 3 m (simulating, for example, a detector mounted on top of a truck)

and measurement locations are restricted to lie outside buildings. The grid of measurement

locations is shown in Figure 3.6 by yellow dots. When computing the attenuation kernels,

linear absorption coefficients of βobs = 1 × 10−2 m-1 and βair = 1 × 10−6 m-1 were used

for transmission through buildings and air, respectively. The absorption coefficients in this

work are scaled down from real-world values for two reasons. First, modeling the build-

ings as solid structures results in a much longer path length in obstacles than if they were

modeled as hollow, so the absorption coefficient is reduced to compensate for the longer

path lengths. Second, higher absorption values decrease the radius of the energy deposi-

tion field. This means more measurements would be needed to get finer coverage of the

area. Reducing the absorption coefficients in the simulation allows fewer measurements to

be used, and thus much reduced simulation times. However, this does not actually result

in decreased simulation fidelity since the ratio between the gamma ray linear attenuation

coefficients of air and brick in [76] is preserved.

In the examples below, simulating measurements requires selecting an exposure time τ ,

which is calculated as follows. First, λmin is selected representing the minimum acceptable

measured count. This value can be selected arbitrarily, or it can be derived by solving

Equation (3.17) for λmin [36]:

SNRmin = 10 log10(λmin/µb) (3.17)

where SNRmin is a design variable representing the minimum acceptable signal-to-noise

ratio. Then, given a count rate µ, τ is selected as τ = λmin/µ. Finally, τ is constrained on
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Figure 3.6: Sequence of measurement locations.

the interval [1, 60] s.

With the attenuation kernels pre-computed and stored, the online portion of the algo-

rithm is executed as measurements are obtained. Measurements are obtained in the se-

quence shown in Figure 3.6. This sequence was chosen arbitrarily, no measurements fall

within an obstacle, and the detector is simply moved to each point without considering any

vehicle dynamics. All simulation parameters are listed in Table 3.1.

3.3.2 Performance Metrics

Performance of the algorithm is evaluated in two ways: runtime and accuracy. Runtime

measures the computation time involved in the online portion of the algorithm only. Ac-

curacy is measured differently depending on the source parameter. Accuracy of the source

cardinality estimate is measured as the absolute difference between the true and estimated

number of sources.
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Table 3.1: Simulation parameters.

Parameter Value Parameter Value
N varies rmax varies

Number of measurements 44 rtrue varies
Possible source location points 4,900 φmin (counts/s) 5,000

βobs m-1 varies φmax (counts/s) 12,000
βair m-1 1× 10−6 S 20

µb (counts/s) 1 σpos (m) 3
λsat (counts/s) 5,000 σφ (counts/s) 20
SNRmin(dB) 25 pup 0.003

τmax(s) 60 pdn 0.003
τmin(s) 1 qh 30

Measurement height (m) 3 ql 10
Total search area width (m) 100 fh(Nold) 50Nold

Total search area length (m) 200 fl(Nold) Nold/1.2

To assess the accuracy of the source location and strength estimates, comparisons are

made between the estimated sources and the nearest true source by distance. In cases where

the estimated number of sources r̂ is higher or lower than the true number of sources rtrue,

the selection of the “nearest” source is not necessarily straightforward. Figure 3.7 shows

how this is handled. If the number of sources is overestimated or if r̂ = rtrue, the estimated

sources are compared against the nearest actual sources (Figure 3.7, left). This means a true

source may factor into the error calculations more than once. If the number of sources is

underestimated, each true source is compared to the nearest estimated source (Figure 3.7,

right). This means an estimated source might contribute to error calculations more than

once.

With the “nearest sources” defined, accuracy of the source location estimate is assessed

as the sum of the Euclidean distances between the true and estimated spatial parameters

according to,

ϵpos =
∑
i∈R

∆di (3.18)

43



Figure 3.7: Error associations for scenarios in which particle filter overestimates (left) and
underestimates (right) source cardinality.

where R = {1, ...,max(r̂, rtrue)} and ∆di is the Euclidean distance between the ith esti-

mated source and its nearest true source for the r̂ ≥ rtrue case, or the Euclidean distance

between the ith true source and its nearest estimated source for the r̂ < rtrue case. Likewise,

accuracy of the source strength estimate is measured as,

ϵφ =
∑
i∈R

∆φi (3.19)

where ∆φ is the absolute value of the difference in source strength between the nearest true

and estimated sources.

3.3.3 Individual Example

An example simulation is provided to contextualize the Monte Carlo studies presented in

the following sections. It is performed using three sources with random locations and

source strengths. The locations are shown in Figure 3.8 as green diamonds, and the source

strengths (from the source at the maximum y value to the minimum y value) are 7,000,

12,000, and 12,000 cps, respectively. Figure 3.8 also shows the hypothesized sources at
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various stages of the particle filter operation, from initialization (top left), successive update

steps, and the final maximum a posteriori estimate (bottom right). Hypothesized sources

are shown as colored dots where color indicates the particle’s source cardinality estimate

(blue = 1 source, red = 2 sources, yellow = 3 sources). The size of the particles correspond

to their likelihood after a measurement update. Measurement locations are shown as small

black asterisks. The “Final” plot shows the building footprints as green lines and estimated

source parameters as large blue asterisks. The initial particle count is N = 5, 000, and time

histories of N and qmax as a function of time is shown in Figure 3.9. The values for qh = 30

and ql = 10 are shown as dashed lines labeled “Increase” and “Decrease,” respectively.

Note that at k = 33 the DPCA algorithm grows the particle set significantly when qmax

exceeds qh due to the aggressive fh function shown in Table 3.1. This results in a large set

of low-likelihood particles scattered across the domain as seen in the bottom center panel

of Figure 3.8.

The final MAP results for this example case exhibit excellent accuracy, with r̂ = 3

sources, ϵpos = 2.3 m, and ϵφ = 1, 463 cps. The measurement updates, MAP estimation,

and DPCA algorithm steps (i.e., the steps performed online) required 32 seconds to run

on an AMD Ryzen 5 3600X 4.4 GHz processor. This runtime could be reduced further

through GPU parallelization of kernel generation, weight calculations, and DPCA likeli-

hood calculations. Note that this runtime number also excludes the detector dwell time,

τ , required each time a measurement is obtained, as this is not pertinent to the algorithm

runtime itself.

3.4 Simulation Results

3.4.1 Attenuation Kernel Study

In the following sections, a series of Monte Carlo simulations is presented to highlight the

trade-offs of various components of the proposed algorithm. The first study investigates

the effect of problem discretization using the attenuation kernels. Two algorithms are com-
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pared. The first is the proposed Discrete Particle Filter (DPF), which uses the discretized

formulation presented in Section 3.2.2. The second is the so-called Continuous Particle

Filter (CPF), which is based on the algorithm in [21]. This algorithm does not employ any

spatial discretization, and instead requires ray tracing to be performed online for each hy-

pothesis at each update step. In order to isolate the effects of discretization only, the DPF in

this example does not include the DPCA algorithm; the particle count is fixed at N = 500

instead. This relatively low value of N is used to keep computation times reasonable for

the CPF case.

A Monte Carlo simulation was performed to investigate general performance trends.

In all cases, the particle filter was configured with rmax = 3. Thirty random source con-

figurations were generated. The true number of sources, rtrue used in each scenario was

randomly and uniformly selected between 1 and rmax (since the assumed maximum num-

ber of sources is not necessarily equal to the true number of sources). The source locations

were then randomly sampled uniformly across the search area, and the strengths were ran-

domized uniformly between 5,000 and 12,000 cps (these bounds were arbitrarily selected

and do not correspond to any specific source activity range). For each of the 30 random

source configurations, 5 trials were run with the CPF and DPF using different random seeds

to generate the initial particle set. This resulted in a total of 150 simulation trials for the

CPF and DPF. Furthermore, these 150 trials were repeated with and without the obstacles.

The results of these simulations are shown in Table 3.2. The first row shows the portion

of trials in which the source cardinality estimate r̂ is correct. The means and standard

deviations of ϵpos and ϵφ are shown as µ() and σ(), respectively. Overall, the accuracy of

the CPF and DPF are not significantly different, as expected. However, the CPF exhibits

average runtimes that are over two orders of magnitude greater than the DPF, even in the

obstacle-free case. Furthermore, because the CPF must compute radiation transport online,

its runtime increases with the number of obstacles (as seen by the difference in average CPF

runtime between cases with and without obstacles). Because this computation is shifted
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Table 3.2: Monte Carlo results comparing CPF and DPF performance (N = 500).

Particle Filter CPF DPF
Obstacles No Yes No Yes

r̂ Correct (%) 84 83.33 87.33 86
µ(ϵpos) (m) 4.736 4.494 5.592 5.259
σ(ϵpos) (m) 4.357 5.121 7.094 6.469

µ(ϵφ) (counts/s) 736.4 488.8 414.2 427.3
σ(ϵφ) (counts/s) 2534 2392 2247 2653
Avg. Runtime (s) 1730 31,910 13.5 12.9

Std. Dev. Runtime (s) 51.08 5070 1.407 1.147

offline for the DPF, its online computation time is independent of the number of obstacles.

While runtime improvements are achieved by the DPF without significant loss of accu-

racy when viewed from the perspective of mean errors, the DPF is subject to more outlier

solutions compared to the CPF. This is due to the low number of particles used in these

cases. Figure 3.10 shows a series of violin plots corresponding to each of the configura-

tions run. Each violin contains 150 trials. The left side of the violin is a histogram, and the

right side is the Inter-Quartile Range with the white dot as the median. The values plot-

ted in the violin exclude failure cases which are shown as colored points above the violin

plots (failed cases are defined as those with performance metrics which are more than three

scaled mean absolute deviations from the median). Note that outliers are excluded only for

the violin plots. Statistics (mean, median, etc.) in tables or graphics other than the violin

plots use every data point. As shown in the figure, a handful of cases for both the CPF and

DPF resulted in very high position errors, usually caused by undershooting or overshooting

the source cardinality. The DPF resulted in a higher number of these “failure” cases, which

is the cause of the slightly higher mean position errors in Table 3.2. Note, however, that

the median of the DPF position error is still lower than the CPF—this means that outside

of these failure cases, the accuracy of the DPF was actually marginally better.

47



3.4.2 Particle Count Study

The occasional poor solutions in the previous Monte Carlo study are caused by the use of a

relatively low number of particles. A study was performed to examine how particle count

affects errors in the solution. In these cases, the same 150 simulations (30 source configura-

tions with 5 random seeds) were run with obstacles using the DPF only. These simulations

were run with varying values of N , with results shown in Table 3.3 and Figure 3.11. In

Figure 3.11, the solid line indicates the mean. As expected, higher N leads to improved ac-

curacy. The rate at which r̂ is correct increases monotonically with N . This in turn reduces

the number of “failed” solutions (i.e., cases exhibiting unusually high position errors) as N

grows, as seen in Figure 3.11. However, increasing N shows diminishing returns in terms

of improving accuracy, especially when measured against the runtime penalty when using

a larger particle set as shown in Table 3.3. These diminishing accuracy returns are due to

measurement sparsity. With sparse measurements, there can be many parameter vectors

with high likelihoods between which the PF cannot distinguish. Therefore, increasing the

number of particles without increasing the density of measurements (particularly in certain

areas) will not necessarily improve estimates. An illustrative example of this can be seen

in Figure 3.5. In the top right of the three subplots, two sources lie close together inside an

obstacle. The radiation field contours are nearly circular outside of that obstacle. Without

a measurement inside the obstacle between these sources, the addition of more particles

in and of itself may not enable the PF to determine that there are two sources inside the

obstacle.

3.4.3 Dynamic Particle Count Adjustment Algorithm Study

The prior section illustrates the well-known trade-off between the desire to use a high

number of particles for improved accuracy, and the desire to use a low number of particles

to reduce runtime. For a practical system that is expected to operate in a range of scenarios

with different spatial limits, obstacle densities, etc., it is nearly impossible to choose a
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Table 3.3: Monte Carlo results with DPF using varying N .

Particle Filter DPF
Particle Count 100 500 2 500 5,000 25,000 50,000
r̂ Correct (%) 78.67 86 92 92.67 94.67 96

µ(ϵpos) (m) 9.457 5.259 3.703 3.579 3.415 3.194
σ(ϵpos) (m) 13.92 6.469 3.43 3.87 3.076 2.821

µ(ϵφ) (counts/s) 466.4 427.3 521.2 474.4 186.5 342
σ(ϵφ) (counts/s) 3030 2653 2578 2139 1788 1826
Avg. Runtime (s) 7.524 12.95 34.66 76.57 1131 4137

Std. Dev. Runtime (s) 0.5937 1.147 1.918 5.964 168.9 666.6

suitable value of N that will work well in all scenarios. The DPCA algorithm described in

Section 3.2 offers a solution to adapt the particle count in real-time, thereby balancing the

accuracy-runtime trade-off automatically for a specific scenario.

To investigate the performance of the DPCA, the DPF, which uses a fixed N , is aug-

mented with the DPCA as depicted in Figure 3.1. This algorithm is denoted as the Dynamic

Discrete Particle Filter, or DDPF. Monte Carlo simulations were performed with the DPF

and DDPF using the same methodology discussed in Section 3.4.1. However, to study the

effect of the number of sources, each Monte Carlo simulation was repeated for different

values of rmax ranging from 2 to 8. The true number of sources, rtrue, is uniformly selected

between 1 and rmax. Increasing rmax tends to challenge the algorithm as the particle filter

must search a solution space that grows exponentially with the number of sources. Note

that the initial particle count used by the DDPF, N0, was set to 5,000 in each simulation.

The results of these Monte Carlo studies are shown in Figures 3.12-3.14 and Table 3.4.

In each figure, the solid lines indicate the mean values. The bolded numbers in Table 3.4

show whether DPF or DDPF is superior in each specific case. In Table 3.4, it is evident that

the DDPF only achieves a small improvement in mean position accuracy compared to the

DPF, which is already quite accurate. Furthermore, the DDPF reduces the average runtime

compared to the DPF for rmax < 7 but only by a small amount, and it even shows higher

mean runtimes for rmax = 7 and rmax = 8. However, the main advantage of the DDPF is its

ability to reduce the number of “failure” cases with very high position errors. Figure 3.12
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Table 3.4: DPF and DDPF compared for varying rmax.

Particle Filter DPF (N = 5, 000)
rmax 2 3 4 5 6 7 8

r̂ Correct (%) 98.67 92.67 85.33 76 60.67 54.67 47.33
µ(ϵpos) (m) 2.509 3.579 4.492 5.514 6.45 6.593 8.373
σ(ϵpos) (m) 3.445 3.87 3.465 4.069 4.943 5.049 5.774

P95(ϵpos) (m) 5.44 11.08 11.41 13.9 15.88 13.22 20.3
µ(ϵφ) (counts/s) 387.1 474.4 510.8 527.6 616.4 491.4 1064
σ(ϵφ) (counts/s) 1688 2139 2462 2628 2770 3142 3875

Mean Runtime (s) 75.46 76.57 77.87 79.01 79.95 82.82 83.05
Median Runtime (s) 77.25 78 79.1 79.9 81.15 83.99 83.81

Particle Filter DDPF (N0 = 5, 000)
rmax 2 3 4 5 6 7 8

r̂ Correct (%) 98.67 92.67 84 76.67 63.33 62.67 49.33
µ(ϵpos) (m) 2.636 3.76 4.454 5.33 5.92 6.091 7.471
σ(ϵpos) (m) 2.846 3.064 3.035 3.484 3.576 3.519 4.038

P95(ϵpos) (m) 6.115 10.56 10.74 12.66 12.41 12.19 14.68
µ(ϵφ) (counts/s) 304.7 348 298.5 460.7 833.2 814.8 1170
σ(ϵφ) (counts/s) 2090 2229 2264 2632 2648 3119 3539

Mean Runtime (s) 31.68 43.41 69.26 68.47 77.63 110.3 134.1
Median Runtime (s) 27.07 26.95 27.39 27.98 29.11 36.3 42.11

shows that the DDPF almost eliminates these failure cases entirely at values of rmax > 5

by increasing the size of the particle set adaptively as measurements are gathered. This

allows the filter to operate at maximum efficiency, using large particle sets when necessary

to address ambiguity, and small particle sets as uncertainty is reduced. The improvement

in the number of failed cases is seen in the 95% upper bounds on position error shown in

Table 3.4 (denoted P95()), which are better for the DDPF in all cases of rmax > 2.

The reason for the DDPF’s reduction of failure cases is encapsulated in Figure 3.13.

This figure shows the mean of the set of negative log likelihoods Q over all update steps.

This is the metric used to increase or decrease N as described in Algorithm 2. A low

average log likelihood (or high negative log likelihood) over the particle set means that the

particle set poorly matches the measurements that have been obtained. Thus, a high mean

negative log likelihood indicates that the PF may suffer high estimation errors without more
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particles. Figure 3.13 shows that the DDPF is much less susceptible to very large mean

negative log likelihoods, meaning that the quality of the particle set is generally better than

the DPF in many cases. This improvement is achieved by increasing the number of particles

when necessary, particularly at high rmax.

The DDPF’s ability to grow the particle set when necessary has obvious implications

for runtime. Figure 3.14 shows runtime statistics for the DPF and DDPF, where the dashed

line indicates the median values. The DPF runtimes are nearly flat with respect to rmax,

since runtime depends primarily on N , which is fixed. For the DDPF, most of the runtimes

cluster around 20-30 sec, but several outlier cases are evident with much higher runtimes;

the frequency of outliers grows with rmax. In these cases, the DPCA algorithm increased

N substantially at some point during the simulation. As a result, the mean runtime of the

DDPF varies as a function of rmax and even exceeds that of the DPF for rmax > 6. However,

as verified in Table 3.4, the median runtime of the DDPF is substantially lower than the

DPF for all rmax. In general, these results show the favorable performance of the DDPF

compared to the DPF. In most cases, the DDPF exhibits similar estimation accuracy to the

DPF with lower runtimes. In challenging cases, the DDPF achieves much better estimation

accuracy than the DPF, albeit at the expense of increased runtime. This trade-off can be

adjusted by tailoring the DPCA tuning parameters in Table 3.1. However, depending on

the measurement scenario, longer runtimes can be an acceptable price to pay in order to

reduce the errors in parameter estimates.

3.4.4 Uncertain Absorption Parameters Study

In practical scenarios, it may be difficult or impossible to derive accurate absorption coef-

ficients for all obstacles in an environment. It is therefore important to characterize per-

formance of the particle filter in the presence of absorption parameter uncertainty. To test

this, a Monte Carlo simulation was performed using the DDPF and the methodology de-

scribed in Section 3.4.1 with rmax = 3. In each simulation, the absorption coefficients for
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each obstacle, βobs, were randomized, while the PF’s attenuation kernel was built with an

assumed constant value of βobs = 10−2 m-1 for all obstacles. This creates a mismatch be-

tween the true obstacle absorption coefficient and the assumed value. Random absorption

coefficients for each obstacle were generated by first sampling ν ∼ N (m,σ), and then

computing βobs = 10−ν . Several Monte Carlo simulations were performed at different val-

ues of m and σ, as shown on the x-axis of Figure 3.15. The “no-obs” and “m = 2 σ = 0”

cases are control trials where there is perfect agreement between the kernels and the simu-

lated environment. The “no-obs” case indicates there are no obstacles in the environment

and all attenuation kernels use βair only. The value of m dictates the bias in absorption co-

efficient estimates, while σ affects the deviation of the coefficients between buildings. The

perturbed absorption parameter for a given obstacle stayed consistent across all 150 trials.

The results of this experiment are shown in Table 3.5. The position and source strength

errors exhibit excellent performance for all except the m = 1, σ = 1 case. In this case, the

large bias led to numerous failed solutions. This is expected: the effects of βobs decrease

geometrically as its exponent −ν increases linearly. Note that in Table 3.5, mean runtime is

roughly correlated to the difficulty of each trial since the DDPF increases N substantially

in the failed cases to try to obtain accurate estimates.

The trend in source strength estimation error as a function of uncertainty in βobs is

shown in Figure 3.15. This figure shows the mean source strength estimation error for each

case with the failed cases removed for each (m,σ) combination. In general, the source

strength estimate undershoots when the true obstacle absorption is larger than assumed and

overshoots when the attenuation is higher than assumed. This is expected: when the true

obstacles attenuate more than the particle filter assumes, the particle filter posits that the

sources must simply be weaker and vice versa.

In the scenarios considered here, the DDPF appears to be fairly robust to errors in ab-

sorption parameters, exhibiting less than a 6% increase in position errors for cases other

than the m = 1 trials. This is because errors in the attenuation kernels are mitigated

52



Table 3.5: DDPF performance with obstacle attenuation parameter uncertainty.

Particle Filter DDPF (N0 = 5, 000)
Obstacle m none 2 1 1 2 2 3 3
Obstacle σ N/A 0 1 0.5 1 0.5 1 0.5

r̂ Correct (%) 92.67 92.67 88.67 98 96 94 91.33 90.67
µ(ϵpos) (m) 3.51 3.76 16.03 5.736 4 3.576 3.801 3.968
σ(ϵpos) (m) 2.726 3.064 26.81 8.758 2.52 2.637 2.779 2.969

µ(ϵφ) (counts/s) 730.8 348 1673 2364 1513 288 567.9 497.1
σ(ϵφ) (counts/s) 1925 2229 9068 1584 1874 2079 2245 2738

Mean Runtime (s) 49.7 43.41 2297 327 234.8 50.12 48.26 53.32

by taking measurements in multiple places throughout the environment, including along

obstacle-free paths in some cases. While the attenuation kernels will, in general, be dif-

ferent for isotopes with different energy spectra, this robustness may allow for multiple

isotopes to share a single set of attenuation kernels. Further investigation of the effects of

absorption parameter uncertainty is beyond the scope of this work but warrants additional

research.

3.5 Lab Scale Experimental Setup

3.5.1 Setup

Hardware experiments were performed indoors in a facility with motion tracking available

as shown in Figure 3.16. Two different densities of concrete bricks were used, and their

absorption coefficients were measured for Cs-137 and Co-60 as shown in Table 3.6. There

were 17 obstacles, each consisting of two bricks. The search area is 12m x 4m. The detector

used was a Kromek Sigma-50 CsI(Th) scintillating detector. The detector was positioned

in the space on top of an iRobot Create 3 using positional feedback control from an external

Vicon motion capture system. This allowed for the detector position to be known precisely

in the environment. The positions of the obstacles were also known precisely. There were

45 measurements taken throughout the space, each with a 2 minute exposure time. The

measurements are taken along a boustrophedon pattern and do not inform the search path.
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Table 3.6: Obstacle characteristics.

Medium Air Light Brick Heavy Brick
Density (kg ∗m−2) 1.29 1.65 × 103 2.25 × 103

Cs-137 β m-1 1 × 10−6 8.84 12.0
Co-60 β m-1 1 × 10−6 6.40 8.73

Table 3.7: Hardware measurement scenarios.

Case Scenario 1 Scenario 2 Scenario 3
Obstacles No Yes Yes

rtrue 1 1 2
Sources Cs-137 @ 24.69 mCi Co-60 @ 4.76 mCi Cs-137 @ 24.69 mCi

Cs-137 @ 0.152 mCi

Three different scenarios were experimented with the configurations shown in Table 3.7.

3.5.2 Measurement Conversion

Spectrum measurements from the detector must first be converted to count rate measure-

ments before they can be used by the particle filter. A set of example spectra taken as a

set of measurements for the two source Cs-137 case can be seen in the left image of Fig.

3.17. This is done by integrating under the curve of interest. This is difficult for a few rea-

sons. Firstly, as a detector saturates, the location of the photopeaks shift (sometimes called

gain-shift). A peak fitting algorithm must be used, and it will need to be able to deal with

noise, especially for weak sources or measurements with a small exposure time. Second,

if multiple isotopes are present, it can be difficult to deconvolve the primary photopeak of

one isotope with the Compton shelf of another. In this research, results are presented for

Cs-137 and Co-60 isotopes. The counts were integrated for bins above a threshold found

via a peak finding algorithm as shown in the center image of Fig. 3.17. Some measure-

ments were thrown out because the detector was fully saturated, and there were no clear

peaks as seen in the right image of Fig. 3.17.
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3.5.3 Performance Metrics

The positions of the isotopes are known accurately via the motion capture system. The

activities of the isotopes are taken from the Georgia Institute of Technology Office of Radi-

ation Safety. The activities were then converted to equivalent source strengths using Equa-

tion (3.20) where A is the activity of the source in Curies, Bq is the number of Becquerels

per Curie, Ad is the detector’s cross sectional area, deq is the source equivalent strength

distance (1m in our case), and Ed is the detector efficiency. The detector efficiency was

calibrated using a Cs-137 source of known activity at a known distance.

φ = A ∗Bq ∗ Ed ∗
Ad

d2eq
(3.20)

The performance metrics presented are calculated exactly the same as they are in the

simulation section except for source strength error. Source strength was first converted to

activity, and then the percent error is given. The PFs were only ran once for each case,

so only the error is reported and not statistics such as mean and standard deviation. The

runtime for each case is the runtime of the PF algorithm only, and does not factor in the

measurement exposure times.

3.6 Experimental Results

Results of each of the three scenarios are presented in Table 3.8. Each source was localized

within a circle whose area represents less than 1% of the total search area. The source

strengths were also found within acceptable tolerances. The poorer performance of the Co-

60 experiment was likely due to the measurement conversion process, and the error should

decrease when the measurement conversion method is improved. The results presented for

scenario 3 did require finding a lucky initial set of particles. This is due to the fact that

the strength difference between the sources is very large. The smaller source had such a

narrow region of convergence that particles were resampled out of the area since the local
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Table 3.8: Hardware results.

Particle Filter DDPF (rmax = 3)
Case Scenario 1 Scenario 2 Scenario 3

N0 500 5 000 500
ϵpos (m) 0.05746 0.1296 0.2294
ϵφ (%) 1.04 16.1 1.21

PF Runtime (s) 14.2 20.07 9.647

measurements were not significantly beyond background noise. “Region of convergence”

refers to the area in the state space around a source in which a particle would persist and

particles’ source hypotheses in that area would converge towards that source.

Figure 3.18 demonstrates why PF methods in general would outperform other methods

such as contour following or peak finding. As seen in the figure, the contours and peaks

do not indicate where the sources are located. The final particle set and MAP estimates for

the case with 2 Cs-137 sources are shown in Figure 3.19. One thing to note in this figure

is the top corner of measurements is unused. This is because the shielded sources being

stored for later experiments were detectable in that area. When those measurements are

used, particles cluster towards the top right of the area and desert the smaller source. This

makes the region of convergence of that solution even smaller.

3.6.1 Limitations

Some important limitations to the proposed algorithm are worth highlighting. First, prior

knowledge of obstacle locations and dimensions is required, and the algorithm currently

offers no mechanism to update these parameters online. This may reduce accuracy if ob-

stacle locations change or are unknown. Second, because measurements are assumed to lie

on a discrete grid, the ability to model continuously moving detectors is limited. This could

be addressed by increasing the density of the measurement grid and mapping continuous

measurements to the nearest grid point. Third, the algorithm currently uses a single set of

attenuation kernels, which may lead to errors in cases where multiple isotopes are present

or the source spectrum is unknown. Finally, the algorithm does not distinguish between
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isotopes, so further sensing and/or algorithmic extensions would be required for isotopic

identification.

The last two limitations described above are manifest in the results. Data with more

than one isotope present in the search area could not be processed. While the accuracy of

the solutions was adequate, the next chapter will demonstrate the improvement gained by

introducing a more refined algorithm for deconvolving a spectra into counts for individual

isotopes. This addition will lead to improved accuracy of results, and it will add more

functionality by incorporating isotopic identification. The results in this chapter represent

the best case scenario when using a counting instrument instead of a spectral instrument.
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Figure 3.8: Stages of the PF. (top-left) initialization. (bottom-right) post-processing. (all
others) update.
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Figure 3.9: Convergence metrics and particle count for sample trial using the DDPF.

Figure 3.10: Position error for CPF and DPF in cases with and without obstacles.
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Figure 3.11: Position error for DPFs with different particle counts.

Figure 3.12: Monte Carlo position errors for DPF and DDPF.
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Figure 3.13: Mean negative log likelihoods over all update steps for DPF and DDPF.

Figure 3.14: Monte Carlo runtimes for DPF and DDPF.
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Figure 3.15: Source strength estimation error for varying levels of obstacle attenuation
parameter uncertainty.

Figure 3.16: Photo of testing area with obstacles and ground robot visible.
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Figure 3.17: Recorded spectra from 2 source Cs-137 experiments. (left) All recorded spec-
tra. (middle) Integrated area to become count measurements. (right) Example of saturated
spectrum.

Figure 3.18: Interpolated radiation field given by measurements of 2 Cs-137 sources.
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Figure 3.19: Final particle set for experiment with 2 Cs-137 sources.
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CHAPTER 4

PARALLEL LOG-DDPF

4.1 Problem Definition

The problem definition in this chapter is left in full for convenience even though there are

many overlaps with the problem definition in Chapter 3. There are a few minor differences

in notation, but the major differences to note are as follows:

1. The isotope is specified as a parameter of interest.

2. The computation of the equivalent source strength is refined to account for the prop-

erties of the detector used.

3. The Poisson distribution is not a saturated Poisson as a more refined model of detec-

tor saturation is used.

4. The measurements are taken from a spectral instrument and must be converted to

counts.

5. The attenuation coefficient is specific to a given isotope.

The coordinate system is defined as (x, y, h) with respect to a local ground frame, where

x and y represent right and up directions, respectively, and h is height above a reference

altitude. There are an unknown number rtrue > 0 of sources of gamma radiation present.

Point sources are indexed by s ∈ {1, ..., rtrue}. Each point source is parameterized by its

isotope, spatial coordinates (xs, ys, hs), and equivalent strength φs. The equivalent strength

calculation is discussed in depth in Section 4.3.2. A set of K measurements, indexed by

k ∈ {1, ..., K}, are taken in the space and parameterized by spatial coordinates (xk, yk, hk)

and value zk ∈ N0 which represents the total number of counts observed over time interval
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τ . The problem statement is to infer the source parameters: isotope, (xs, ys, hs), and φs for

all s given the measurements. For the purposes of this chapter, it is assumed sources lie on

the h = 0 plane.

The likelihood of measuring z counts during time interval τ from a source emitting

an expected count rate µ at a given measurement location is Poisson distributed. Specif-

ically, given the expected number of counts λ = µτ , a measurement z is drawn from the

Poisson distribution P(λ). As the radiation field propagates through the environment, the

expected count rate µ is subject to attenuation via absorption according to Equation (4.1).

In this equation, βmd is the linear absorption coefficient of the medium, dmd is the distance

travelled through the medium, and µ0 is the unattenuated count rate.

µ = µ0e
−βmddmd (4.1)

4.2 Methodology

The proposed methodology is a series of algorithms collectively dubbed the Parallel Log

Dynamic Discrete Particle Filter (Parallel Log DDPF). An overview of the Parallel Log

DDPF is shown in Figure 4.1. By leveraging the additional information provided by gamma

spectrometers instead of simple counting instruments, the Parallel Log DDPF is capable of

accurately modeling attenuation in an environment, identifying distinct isotopes, and per-

forming precise source term estimation in obstacle rich environments for multiple sources

of the same or different species.

First, unmodified spectra are fed into the Gamma Spectrum Unfolding Algorithm from

the detectors. The Unfolding Algorithm isolates the counts due to each isotope given in the

table of isotopes. This involves applying the detector calibration, denoising, background

subtraction, and overlapping peak separation. The methods presented in this section are

designed to be as detector agnostic as possible; however, the overall measurement model

of the detector greatly impacts the Unfolding Algorithm and will be discussed more in
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Figure 4.1: Overview of Parallel Log DDPF algorithm.

Section 4.3.2.

Once counts have been found for each isotope, they are passed separately to each cor-

responding Log DDPF which comprise the Parallel PF. The Log DDPF is nearly the same

algorithm shown in Chapter 3 with the only difference being that the particle weights are

manipulated in the logarithmic domain instead of the linear domain. Each individual Log

DDPF is associated with a specific isotope from the table of isotopes. They each use ab-

sorption coefficients tailored to their specific energy to compute their attenuation kernels.

Each Log DDPF runs completely independently and passes their final estimates to the Par-

allel PF Mixing Algorithm.

Finally, the Mixing Algorithm evaluates each set of isotope-specific measurements and

final parameter estimates to determine which isotopes are actually present in the environ-

ment. The output of the Mixing Algorithm is a table containing the strength, position, and
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Figure 4.2: Overview of Parallel Log DDPF phases of operation.

isotope for each source of gamma emissions present in the environment.

As shown in Figure 4.2, all but two steps of this process operate during the online

phase (while the measurements are being gathered). The attenuation kernels are precom-

puted, and thus they are considered an input alongside the table of isotopes. The Mixing

Algorithm is a post-processing step; however, if desired, the Mixing Algorithm could be

modified to continuously provide the Parallel Log DDPF’s best estimates during a search.

4.2.1 Dynamic Discrete Particle Filter

The Dynamic Discrete Particle Filter (DDPF) is explained in detail in Chapter 3. For

convenience, a summary of the essential elements is provided here. Relevant context to the

goals of this chapter is provided as well. Figure 4.3 shows an overview of the DDPF.

Regularized PF

The core of the algorithm is a regularized PF found in [21]. The “particles” represent

hypotheses about which sources are present in the environment. A particle can represent

any number of sources, and a particle’s likelihood is evaluated as a whole (i.e. all sources
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Figure 4.3: Overview of DDPF algorithm.

that comprise that particle contribute to the likelihood computation). Thus this algorithm

can estimate the cardinality and source terms of the sources present in the environment.

Being a “regularized” PF means the particle’s states (number of sources, source po-

sitions, source strengths) are perturbed according to a Gaussian kernel. This facilitates a

form of stochastic gradient ascent which allows for more coverage of a large state space

with fewer particles.

Discrete Attenuation Kernels

The “Discrete” property allows the regularized PF to use “Attenuation Kernels” provided

by the radiation transport model. These kernels describe the attenuation of gamma radia-

tion from a set of fictional point sources to a set of proposed measurement locations. The

attenuation is calculated via ray tracing through the environment using the absorption co-

efficients of the material and the geometry of the environment. The absorption coefficients

are specific to the energy level of the radiation. Any method can be used to compute the

attenuation kernels beforehand, even Monte Carlo methods.
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This main benefit of this precomputation is speed and efficiency. The expected count

rate must be computed for every particle with every measurement update. The kernels

(Θk,s) link the source (s ∈ {1, ..., r}) and measurement (k) locations. They allow the

expected count rate to be computed during runtime via matrix product given Equation (4.2).

Because the expected count rate scales linearly with equivalent source strength φ, the same

kernels can be reused for colocated sources of different strengths. On the contrary, an entire

radiation transport simulation would need to be performed in a “continuous” PF for each

colocated source of differing strengths.

µ̂ =

[
Θk,1 · · ·Θk,r

]
φ1

...

φr

 (4.2)

Dynamic Particle Count Adjustment

The “Dynamic” aspect refers to the Dynamic Particle Count Adjustment (DPCA) algo-

rithm. This computes the likelihood that the current set of measurements could’ve come

from the current set of particles. It then raises, lowers, or maintains the particle count based

on that likelihood. This allows the PF to balance speed and accuracy depending on how it

is tuned.

4.2.2 Log PF

Particle weights can approach numbers very close to zero. This is due to three factors:

the state space is very large relative to the number of particles used, measurement updates

frequently have narrow distributions that can be far into the tails of the prior distribution,

and the likelihood computation uses a Poisson distribution for the measurement update.

While this accurately models counting statistics, it does not accurately model a physical
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detector’s response. The detector’s net response would be given by a complicated com-

pound probability distribution due to the physics of radiation detection. An example of

such confounding factors are the light collection efficiencies of a detector.

To overcome low particle weights, all computations involving the likelihood of parti-

cles (the likelihood computation, resampling, DPCA, and final parameter estimation algo-

rithms) were moved to the logarithmic domain to preserve accuracy and stability. Instead

of using the MAP estimate like the previous chapter, this chapter uses the Minimum Mean

Squared Error (MMSE) estimate in the log domain. Although there is an equivalent MAP

estimate in the log domain, the MMSE estimate was found to produce much more accurate

results. The log resampling and MMSE estimates come directly from Gentner et. al [77]

with no modifications. The weighing (likelihood computation) and DPCA steps are where

novel contributions are made.

Log Likelihood Calculation

The likelihood computation step computes the log Poisson probability for each particle

according to Equation (4.3). Note the conversion from a factorial to a sum of z values.

To increase computation speed, the terms are normalized by z such that it becomes Equa-

tion (4.4), except for the rare case when z = 0.

log(p(z;λ)) = z log(λ)−
z∑

i=1

log(i)− λ (4.3)

log(p(z;λ)) ∼ log

(
λ

z

)
− log(1)− λ

z
(4.4)

Iterative Jacobian Algorithm

The resampling and MMSE estimates in the log domain hinge on the iterative Jacobian

algorithm to compute the logarithm of a sum of two exponentials i.e log(eδ1 + eδ2). This is
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also called Jacobi’s Logarithm or Zech’s Logarithm and is shown in Algorithm 3.

Algorithm 3 Iterative Jacobian algorithm
1: function log(

∑n
i=1 e

δi) = JACOBI({δi}ni=1)
2: Init: ∆1 = δ1
3: for l = 2 : n do
4: δl = max(δl,∆l−1) + log(1 + e−|δl−∆l−1|)
5: end for
6: log(

∑n
i=1 e

δi) = ∆n

7: end function

Log Resampling

The resampling step uses the likelihoods log(p(z;λ)) as un-normalized weights, w∗. The

weights are normalized by subtracting each weight by the normalization factor W given in

Equation (4.5). To compute this sum while staying in the log domain, the iterative Jacobian

algorithm is used.

W = log

(
N∑
i=1

ew
∗
i

)
(4.5)

The normalized weights, w = w∗−W , are used to compute the log Cumulative Density

Function (CDF). Then particles X1:n are sampled from using the systematic resampling

algorithm in the log domain. This process is shown in Algorithm 4. The new log weights

of the particles are all equal to log(n−1).

Log Dynamic Particle Count Adjustment

The Log DPCA computes the likelihood that the measurements could have come from the

current particle set in the log domain according to Equation (4.3). This contrasts the DPCA

in Chapter 3 which calculates likelihood in the linear domain and converts it into the log

domain. Because subsequent steps of the DPCA were already designed to work in the log

domain, no further modifications were made.
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Algorithm 4 Systematic Resampling in the Logarithmic Domain
1: function X = LOGRESAMPLE(X,w)
2: Initialize the Log-CDF
3: c1 = w1

4: Construct the Log-CDF
5: for l = 2 : n do
6: cl = max(wl, cl−1) + log(1 + e−|wl−cl−1|)
7: end for
8: i = 1
9: Draw starting point

10: u1 = U [0, n−1]
11: for j = 1 : n do
12: uj = log(u1 + n−1(j − 1))
13: while uj > ci do
14: i = i+ 1
15: end while
16: Xj = Xi

17: end for
18: end function

4.2.3 Log Minimum Mean Squared Error Estimate

The MMSE of any given parameter of the particle filter ξMMSE is given in Equation (4.6). ξ

is a vector containing all of a given parameter for a given source (e.g. φs) from each parti-

cle. The notation A+ and A− indicates the parameter vector entries that are positive and

negative respectively. This is because the parameters absolute values must be fed into the

iterative Jacobian algorithm as logarithms are only defined for positive numbers. Note that

the case where a parameter equals zero is missing. This is because in a weighted average,

zero multiplied by a weight is zero anyway. This algorithm is equivalent to performing a

weighted sum in the linear domain, but it preserves the presicion of the logarithmic domain.

ξMMSE = eJacobi({w+log(|ξ|)}A+) − eJacobi({w+log(|ξ|)}A−) (4.6)

4.2.4 Gamma Spectrum Unfolding Algorithm

Gamma spectrum unfolding is used to separate out the counts due to each isotope from the

spectra to feed into the Parallel PF. There are many methods for gamma spectrum unfold-

ing [78]; in general, each method contains these steps: denoising, peak finding, baseline
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subtraction, and overlapping peak separation. Gamma spectrum unfolding is a difficult

process with the complexity depending on the detector used and the isotopes present. This

makes each Unfolding Algorithm quite bespoke.

Denoising

There are many methods for denoising a spectrum which are generally split into two cate-

gories: Time domain filtering and frequency domain filtering. Within time domain filtering

are methods like Finite Impulse Response filtering (FIR) [79], least square basis function

fitting [80], and Support Vector Machine (SVM) methods [81]. Within frequency domain

filtering, methods such as wavelet transforms [82], Fourier transforms [83], and Noise Ad-

justed Singular Value Decompositions (NASVD) [84] are used.

In this work, the adaptive smoothness Penalized Least Squares (asPLS) method [85] is

used. It is a least squares basis function fitting technique that was originally developed for

infrared spectra. This algorithm was implemented using Pybaselines’ [86] whittaker.aspls

method.

Peak Localization

There are myriad ways to find peaks in data. In addition to standard numerical methods, a

few other notable methods are the wavelet transform [87], Gaussian curve fitting [88], or

Savitzky–Golay filtering [89].

This work uses Gaussian curve fitting via Lawrence Berkeley National Laboratory’s

python package, becquerel [90]. Specifically, peaks were found by convolving the spectrum

with a Gaussian kernel using the PeakFinder method with a GuassianPeakFilter kernel.

This kernel uses the detector resolution to search for peaks that roughly fit the resolution.

The peak locations were then compared to the expected locations of the gamma lines. If

they were located within 10% of the expected energy value and the signal-to-noise ratio

(SNR) was above 5, then the peak was assumed to be due to the given set of isotopes.
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Otherwise, they are discarded.

The expected locations of the gamma lines E is provided in the table of isotopes. The

gamma lines are associated with a mode of decay. Only one gamma line need be chosen for

each isotope, and the choice will depend on detector resolution and which other isotopes

are on the table. For example, with a low resolution detector, it is better to use the 1332

KeV over the 1173 KeV gamma line for Co-60 when Ra-226 is present because of the

1120 KeV line emitted by one of Ra-226’s daughter isotopes, Bi-214. The more that is

known about an isotope, the more accurate the unfolding process will be. However, the

Parallel Log DDPF could be run to perform STE for the gamma lines with no a priori

knowledge of isotopes in general. It could simply return the location and relative strengths

of sources for each peak that is detected, and those peaks could be matched to certain

sources a posteriori. (For example, the algorithm could estimate there are two colocated

sources with similar strengths corresponding to 1173 KeV and 1332 KeV gamma lines.

An operator could then infer that there is a single Co-60 source at that location.)

Gain-Shift Correction

One challenge to the described peak localization approach is something called “gain-shift.”

This was briefly mentioned in Chapter 3 Section 3.5.2, and it is shown in Figure 3.17. Gain-

shift is where the locations of the photopeaks shift to lower energy levels. Thus the expected

location of a gamma line will no longer coincide with the actual location of a photopeak.

To fix this, a gain-shift correction was put into place. The “gain” (Γ) corresponds to the

linear calibration from energy bins to energy (KeV) as seen in the abscissa of spectra. This

gain is usually a scalar multiplied by the energy bin to yield the approximate energy level.

It is calibrated using a source with a very distinct photopeak (such as Cs-137). However,

the value of this calibration constant changes with the count rate. Too high of a count rate,

and this gain shifts.

Multiple trials were performed logging the photopeak location and gross counts (C) to
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Figure 4.4: Linear calibration gain and gross counts plotted using Cs-137 photopeaks for
calibration.

generate the data points seen in Figure 4.4. (Note that gross counts were used instead of

counts per second. Since all measurements were taken for 120s, the gross counts and count

rate are directly proportional.) An exponential function given in Equation (4.7) is fit to the

data. The solid blue line in Figure 4.4 is Equation (4.7). The orange and green lines are the

upper and lower tolerance bounds, respectively. These lines represent the furthest a linear

calibration gain can be from the curve before it is rejected as an invalid measurement. The

coefficients (a, b, c, d) are given in Table 4.1.

Γ = aebC + cedC (4.7)
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Table 4.1: Gain-shift correction coefficients

Coefficient Value
a 0.3645
b 5.564e-08
c 0.000743
d 4.099e-06

Baseline Correction

Baseline correction, also referred to as background subtraction, involves the removal of

elements of the spectrum that are not directly associated with the peak. This can be done via

2nd difference background subtraction [91], peak clipping [92], discrete derivative filtering

[93], iterative filtering [94], Sensitive Non-linear Iterative Peak clipping (SNIP) [95], or

using the Fourier transform [96].

The simplest method for calculating the baseline of a defined peak is a linear baseline

[97]. For each peak found, the linear baseline is drawn between the counts at the ±3σ

energy bin locations as they generally occur where the peak blends back into the spectra.

This range of σ was chosen to be large enough to fully cover the base of the peak, but not

too large as to encroach on neighboring peaks.

Overlapping Peak Separation

Overlapping peak separation, sometimes referred to as “deconvolution,” is the most difficult

part of gamma spectrum unfolding. There are many complex methods such as Fourier auto

reverse convolution [98], gold’s algorithm [99], or iterative convolution [100]. In addition

to finding the peaks, Gaussian curve fitting can be used to deconvolve them as well [88].

There are also various geometric methods such as the tangent method [101].

However, because we have a limited set of isotopes to work with, we can perform

spectrum stripping [97]. This is the process of subtracting out the relative contributions

of each peak until nothing is left. For example, our table of isotopes has Cs-137 with a

gamma line at 662 KeV and Ra-226. Ra-226 has a strong gamma line at 609 KeV due
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Table 4.2: Table of isotopes after Unfolding Algorithm is run.

Isotope E (KeV) Counts
Ra-226 351.932 2177
Cs-137 661.657 134
Co-60 1332.492 1547

to the Bi-214 daughter, and with a low resolution detector this peak overlaps with the 662

KeV peak. However, Ra-226’s 352 KeV peak, due to its Pb-214 daughter, doesn’t interfere

with any other isotopes of interest. So, using the intensity of the 609 KeV peak relative

to the 352 KeV peak, the approximate amount of counts due to the 609 KeV peak can be

subtracted from the 662 KeV peak.

A sample isotope table with counts given by the Unfolding Algorithm is given in Ta-

ble 4.2. The corresponding output spectra is shown in Figure 4.5. One thing to note is that

the 662 KeV Cs-137 peak seems the largest in Figure 4.5, but has a very low count value

in Table 4.2. This is because the Cs-137 in this measurement is located a few meters away,

and the peak is in fact the 609 KeV peak due to the daughter, Bi-214.

Non-Paralyzable Detector Model

The counts from the Unfolding Algorithm do not yet account for the detector’s dead time,

so one additional step is needed. This work uses a non-paralyzable detector model as shown

in Equation (4.8) to correct for the dead time of the detector [97]. This calculation yields

the true interaction rate ω, given the dead time factor τd (for the Kromek Sigma 50, this is

5.813× 10−9 s [102]), and recorded count rate µrec. The true interaction rate is multiplied

by our sampling time τ to yield a measurement z that is actually used by the Parallel Log

DDPF. The recorded count rate is the counts given by the Unfolding Algorithm up to this

point divided by the sampling time.

ω =
µrec

1− µrecτd
(4.8)
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Figure 4.5: Example calibrated spectrum taken over 120 s with Kromek Sigma 50. Peak
centroids shown by vertical lines. Peak areas are filled in with baselines removed.

4.2.5 Parallel PF

The object of the Parallel PF is to facilitate operation with various isotopes simultaneously.

Whereas the original DDPF could only handle multiple sources of the same isotope, extend-

ing it into the Parallel PF allows for multiple sources of the same or different isotopes. This

is facilitated by the Unfolding Algorithm because a single spectra can now independently

generate count measurements for multiple isotopes. In most cases, these measurements will

be entirely independent of one another and allow for several Log DDPF algorithms to work

in parallel. Using multiple independent Log DDPFs also allows for the use of attenuation

kernels tailored to the specific isotope.
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Parallel PF Mixing Algorithm

The particles used in this work cannot represent the “zero sources present” hypothesis,

unlike [21]. However, when there are no sources of a certain isotope present, the Log

DDPF’s estimated source terms will be a single source of the minimum strength at an

arbitrary location. Thus, we need a post processing step to determine which sources are

spurious; this is the job of the Mixing Algorithm.

The Mixing Algorithm collects the set of output sources from the Parallel PF once all

the constituent Log DDPFs yield their MMSE estimates. The Mixing Algorithm finds the

output sources near the minimum strength threshold. At each of these low-strength output

sources’ locations, a fictional source of the minimum strength is created. The expected

count rate due to this fictional source is computed for all the measurement locations. The

measurement location with the largest expected count rate is examined. This fictional value

represents the minimum threshold that the recorded measurement at that location should be.

If the recorded measurement is less than 90% of the fictional measurement, the correspond-

ing output source is removed from the set of output sources.

Once this process is complete, the remaining output sources represent the final source

term estimates for the Parallel Log DDPF.

4.3 Lab Scale Experiments

4.3.1 Setup

All experiments were performed in a scaled down indoor test facility shown in Figure 4.6.

This is for two reasons. First, there were limitations on transportation, storage, and use of

the sources available. Second, the facility is equipped with a Vicon motion-capture system

to eliminate the hassle of performing robotic localization. In Figure 4.6, the coordinates are

centered on the origin labelled “O” with the x, y, and h axes shown. There are three points

labelled a, b, and c. Their coordinates are shown in Table 4.3, and they are the locations

80



where sources can be during the experiments. The floor is not perfectly level, otherwise

their h-coordinates would be zero. These positions are not known to the search algorithm

a priori.

Each experiment was performed with all 17 obstacles present. Each obstacle is com-

prised of two concrete bricks. In Figure 4.6, certain bricks are outlined with black tape,

these bricks are 50% more dense than the bricks outlined with blue tape (corresponding to

a roughly 50% higher absorption coefficient βmd).

The orange line in Figure 4.6 denotes the search path of the robot. The simple path was

chosen instead of using an active search method in order to keep the quality of measure-

ments consistent across experiments. The same 45 measurements locations were used in

the same order for all experiments. The measurements lie on a 9 × 5 grid with a slightly

less than 1 meter basis. The search area comprises in total a 9 m × 5 m area.

The robot performing the search is shown in Figure 4.7. It is an iRobot Create 3 with

a Kromek Sigma 50 detector on top controlled by a Raspberry Pi 4b running ROS. The

robot communicates with a base station over WiFi. The robot receives it’s position from

the Vicon motion-capture system with sub-millimeter precision at 100 Hz. The robot also

relays the detector’s raw count data. The robot is programmed to move along a given path

of measurement locations. At each location, it sits stationary and records count data for

120 s.

The experiments that were performed are tabulated in Table 4.4. The experiments are

labelled with capital A, B, and C. There were 4 unique sources used in the experiments.

They were 2 Cs-137 sources of different activities (labelled Sm and Bg corresponding to

the weaker and stronger of the sources, respectively), a Co-60 source, and a Ra-226 source.

The columns of the table indicate if and where a source was present in the given experiment.

For experiment C, the Co-60 was shielded with 38 mm of lead, and the Ra-226 was shielded

with 3.2 mm of lead. The source activities and shielding values can be found in Table 4.5.
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Figure 4.6: Search area for experiments.

Table 4.3: Source location coordinates

Location x (m) y (m) h (m)
a -0.0371 -0.7024 0.0017
b -3.8321 1.0961 0.0057
c -3.5048 -0.8778 0.0067

4.3.2 Detector Model

In order to gauge the accuracy of the equivalent source strength estimate φ̂ given by the

Parallel Log DDPF, it is necessary to convert the activity of the sources into their reference

equivalent source strengths φtrue. The reference equivalent source strength is the number of

counts a detector will report in a photopeak at 1 m from a source in 1 s with the minimal

set of attenuating factors between the source and detector. Equation (4.9) shows how to

convert from activity to equivalent source strength [97], [103].
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Table 4.4: Experiment matrix

Src
Exp. A B C

Sm Cs-137 a a a
Bg Cs-137 - b -

Co-60 b - b*
Ra-226 - - c*

* The source at that location was isotropically shielded to approximate a lower activity
source.

Figure 4.7: Robot to take measurements.

φ = A× ϵex × ϵin (4.9)

In Equation (4.9), the activityA in Becquerels is multiplied by extrinsic ϵex and intrinsic

ϵin efficiency factors. The extrinsic factors are shown in Equation (4.10). They encompass

things that are not specific to the scintillating properties of the detector crystal. G is the

fraction of all space that the detector subtends, sometimes referred to as the geometrical

solid angle or extrinsic efficiency. This value is given in Equation (4.11) as simply the ratio

of the area of the detector faceAd to the area of a sphere with radius rsd equal to the source-

to-detector distance. I is the fraction of photons transmitted by the intervening materials

between source and detector. This value is found using the absorption coefficients of the

intervening materials. For the reference case, only air and the thin aluminum casing of the
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detector would contribute. Thus, I is assumed to be 1 unless it is shielded (Ishield). TB is

the total branching ratio for a specific gamma line and is sourced from [104]. TB is the

product of BF and BR where BF is the branching fraction for the mode of decay (gamma

line) of interest, and BR is the branching ratio for that photon energy.

ϵex = G× I × TB (4.10)

G =
Ad

4πr2sd
(4.11)

The detector intrinsics are the efficiency values directly associated with the scintillating

crystal’s composition. M is the absorption efficiency, i.e. the fraction of photons absorbed

by the detector. ηpt is the detector’s peak-to-total ratio. This value relates the net counts

in the photopeak to the total counts in the detector. Both M and ηpt vary with the energy

level of the incident photon and in this work are interpolated via data given by [103]. A

few experiments were performed using Cs-137 and Co-60 to validate this data. The source

activities and extrinsic efficiencies were known a priori from manufacturer datasheets. The

reference equivalent source strength is calculated for a 1 meter source-to-detector distance

and 1 second measurement time using count measurements output from the Unfolding

Algorithm. Finally, Equation (4.9) was used to compute the intrinsic efficiency. It was

calculated to be within 1% of the intrinsic efficiency found when using the interpolated

data. Table 4.5 shows the exact values used for the conversion of the source activities to

their reference equivalent strengths.

ϵin =M × ηpt (4.12)
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Table 4.5: Source activities, strengths, and conversion factors

Param
Source Sm Cs-137 Bg Cs-137 Co-60 Ra-226

Activity (mCi) 0.152 24.7 4.80 0.950
E (KeV) 661 661 1332 351
φtrue (cps) 72.43 11790 856.0 -

φtrue, shield (cps) - - 85.60 88.18
Ishield - - 0.10 0.23

TB (%) 85.1 85.1 100 35.7
M 0.73 0.73 0.43 0.82
ηpt 0.52 0.52 0.22 0.75

Ad (m2) 6.452× 10−4

rsd (m) 1

4.3.3 Results

The results are shown in Table 4.6. The position error ϵpos is simply the Euclidean distance

between the source’s true position and the Parallel Log DDPF’s estimate. A comparison

between the Parallel Log DDPF and a Parallel DDPF (working in the linear domain) was

attempted, but the linear domain algorithm failed after a few measurements due to contin-

uously degenerating to zero weight particles (this was not a problem in Chapter 3 where

simulated count measurements were used). To contextualize the position error, a circle with

a diameter of 10 cm comprises an area 0.017% of the 9 m × 5 m search area. Moreover,

due to the discretized attenuation kernels, the source hypotheses lie on a grid with spacing

of just over 8.5 cm. The source equivalent strength error is given by Equation (4.13).

ϵφ =

∣∣∣∣φtrue − φ̂

φ̂

∣∣∣∣× 100% (4.13)

Experiments A and C show favorable performance. Experiment B was the most chal-

lenging experiment because it was two sources of the same isotope with drastically differ-

ent activities. The smaller activity source lies just above the allowable minimum source

strength hypothesis of 50 cps. There are no measurements where the larger source does

not dominate. Curiously, the larger source strength was underestimated by 25% while the

85



Table 4.6: Experimental results

Experiment Isotope ϵpos (cm) ϵφ (%)
A Sm Cs-137 6.512 2.573

Co-60 4.673 4.279
B Sm Cs-137 12.27 24.49

Bg Cs-137 5.153 25.10
C Sm Cs-137 3.688 9.326

Co-60* 4.614 3.855
Ra-226* 7.535 1.887

* The source was isotropically
shielded to approximate a lower
activity source.

smaller source was overestimated by 25%. This indicates that there are a spectrum of

valid hypotheses, and that the system is underdetermined by the measurement set. More

measurements at critical locations could improve this performance.

The convergence of the particle filter in Experiment C is shown in Figure 4.8. In this

case, the word “convergence” is used to indicate the movement of particle filter’s estimated

parameters towards the true values shown as dashed horizontal lines. These plots also show

the cardinality via the number of colored lines plotted. As the particle filters progress, their

cardinality also arrives at the true value. All values in this plot are found using the MMSE

estimates at each measurement iteration, k. Most parameters seem to quickly find their true

value and stay nearby except for the Ra-226 y-coordinate. There is some instability in the

value over time until the last several measurements. The cause of this behavior is likely

due to the second source estimate not being filtered out until later in the experiment, and

the MMSE estimate vacillates between selecting one, the other, or both sources.
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Figure 4.8: Convergence of Parallel Log DDPF for Experiment C.
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CHAPTER 5

CONCLUSION

5.1 Contributions

• Chapter 2 demonstrates a potential methodology for rapid radiological mapping us-

ing teams of UAVs and UGVs. The concept leverages the combined rapid transporta-

tion capability of UAVs and the accurate sensing performance of UGVs to quickly es-

timate accurate radiation maps. A one-step-ahead information-driven search method

was formulated for UAV path planning, and a simple Boustrophedon scanning pat-

tern was employed for the UGVs. Simulation results compared performance of the

UAV-UGV teams against a UGV-only team and against UAV-UGV teams using ran-

dom sampling, highlighting the performance benefits obtained from the UAV’s rapid

transportation capability and the benefits of information-driven planning. Results

illustrate the potential of employing UAV-UGV teams for radiation mapping in sce-

narios where estimates of the radiation environment must be obtained quickly.

• In Chapter 3, particle filtering algorithm is proposed for radiological source term es-

timation. In light of the complexity of the likelihood calculations, the continuous

parameter estimation problem is reduced in the spatial dimensions to a discrete esti-

mation problem. This allows measurements for each candidate source-measurement

location pair to be simulated offline for a reference source strength using a radiation

transport model of any desired complexity. The algorithm also includes a dynamic

component that adjusts the number of particles in real-time to achieve a suitable bal-

ance between estimation accuracy and filter runtime. The proposed methodology

may be applied to other estimation problems outside of radiological applications and

may be advantageous whenever likelihood calculations involve complex models that
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are better suited for offline rather than online simulation.

• Monte Carlo simulation results illustrate that the particle filter is capable of produc-

ing accurate source term estimates even in obstacle-rich settings with relatively large

numbers of sources (up to eight). Furthermore, simulation results show that the pro-

posed particle filter is reasonably robust to uncertainty in absorption coefficients, and

there is a drastic improvement over the state of the art in both accuracy and speed.

• The performance of the DDPF was also examined in lab scale experiments. Using

a spectral instrument to simulate a counting instrument, the DDPF was found to

perform as well as it did in the Monte Carlo studies. These experiments also clearly

revealed shortcomings to the DDPF when handling varying isotopes and low quality

measurements.

• Chapter 4 sought to alleviate the shortcomings of the DDPF when handling hardware

measurements. A gamma spectrum unfolding algorithm was implemented to refine

the input into the particle filter. This also allowed for the use of multiple attenuation

kernels simultaneously. The entire algorithm was converted into the logarithmic do-

main to manage low quality measurements. All of these additions allowed for the

rapid and accurate localization and identification of multiple isotopes in lab scale

experiments.

5.2 Recommended Future Work

5.2.1 Optimal Kernel Generation Parameters

The current method of generating the attenuation kernels involves two regular grids for

the measurement and source locations. The regularity of the source grid keeps the resam-

pling step unbiased; however, the measurement grid could be computed at any set of points

without affecting inference. Using the knowledge of obstacle shapes and locations, mea-

surements could be prescribed to positions that maximize the unobstructed line of sight in
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the environment. This would allow for measurements to be less attenuated overall, thus

producing higher quality measurements and minimizing any innacuracies with the absorp-

tion parameters of the material.

5.2.2 Information Driven Active Search

In a search scenario, time matters. Active search algorithms have repeatedly been proven to

reduce search times [33], [41], [105]. Fortunately, there are several frameworks and metrics

to build upon [41], [106]. These algorithms would allow for efficient real time search with

multiple observers. These methods would first be evaluated in simplified Monte Carlo

simulations before being deployed on the final hardware.

5.2.3 MCNP Kernel Generation Pipeline

The current transport model is primitive compared to state of the art Monte Carlo N-Particle

Transport (MCPN) software. Work has begun to develop a pipeline to perform environment

characterization and attenuation kernel generation to rapidly model a new environment.

Current plans would be to leverage DAGMC: Direct Accelerated Geometry Monte Carlo

[53]. This process would also allow for further validation of the current transport model.

The runtime of Monte Carlo N-Particle Transport Code (MCNP) for our work would be

investigated, and if it found unacceptable, further work will be done to refine, generalize,

and expand the current transport model.

5.2.4 Measurements in Motion

Current hardware validation of this algorithm has measurements taken at a standstill for a

fixed period of time. Ideally, observers should be constantly moving. A continuous position

and count rate datastream would make for a large number of measurement locations for

attenuation kernels. There exists prior work on methods of spatial deconvolution or mesh

generation to allow for continuous measurements to inform a hypothetical measurement at
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a discrete point, so perhaps this would only be a minor challenge of implementation.

5.2.5 Hardware Development

Development of the heterogeneous UAV and UGV teams would need to be performed to

adequately test their performance. However, a much more significant contribution respec-

tive of hardware would be the addition of models to deal with new types of detectors. One

specific improvement could be the adjustment of the measurement model such that it can

handle a directional detector (e.g. a collimated detector). Improving the ability of the in-

ference algorithms to work with a broader array of detectors would be much more valuable

then developing any individual robotic platform.

5.2.6 Source Measurement Factor Graph Integration

A Simultaneous Localization and Mapping (SLAM) system has been developed which

could use information from the particle filter to inform vehicle positions so long as the

sources are static in the environment. This would allow the particle filter estimates and

radiation sensors be used to help orient and localize the vehicles position. This could be an

interesting addition to scenarios where a vehicle is GPS denied.
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